首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
PROBA-3 is a space mission of the European Space Agency that will test, and validate metrology and control systems for autonomous formation flying of two independent satellites. PROBA-3 will operate in a High Elliptic Orbit and when approaching the apogee at 6·104 Km, the two spacecraft will align to realize a giant externally occulted coronagraph named ASPIICS, with the telescope on one satellite and the external occulter on the other one, at inter-satellite distance of 144.3 m. The formation will be maintained over 6 hrs across the apogee transit and during this time different validation operations will be performed to confirm the effectiveness of the formation flying metrology concept, the metrology control systems and algorithms, and the spacecraft manoeuvring. The observation of the Sun’s Corona in the field of view [1.08;3.0]RSun will represent the scientific tool to confirm the formation flying alignment. In this paper, we review the mission concept and we describe the Shadow Position Sensors (SPS), one of the metrological systems designed to provide high accuracy (sub-millimetre level) absolute and relative alignment measurement of the formation flying. The metrology algorithm developed to convert the SPS measurements in lateral and longitudinal movement estimation is also described and the measurement budget summarized.  相似文献   

2.
PROBA-3 is an ESA mission aimed at the demonstration of formation flying performance of two satellites that will form a giant coronagraph in space. The first spacecraft will host a telescope imaging the solar corona in visible light, while the second, the external occulter, will produce an artificial eclipse. This instrument is named ASPIICS (Association of Spacecraft for Polarimetric and Imaging Investigation of the Corona of the Sun). To accomplish the payload's scientific tasks, PROBA-3 will ensure sub-millimeter reciprocal positioning of its two satellites using closed-loop on-board metrology. Several metrology systems will be used and the Shadow Position Sensor (SPS) subsystem senses the penumbra around the instrument aperture and returns the 3-D displacement of the coronagraph satellite, with respect to its nominal position, by running a dedicated algorithm. In this paper, we describe how the SPS works and the choices made to accomplish the mission objectives.  相似文献   

3.
Nanosatellites in the swarm initially move along arbitrary unbounded relative trajectories according to the launch initial conditions. Control algorithms developed in the paper are aimed to achieve the required spatial distribution of satellites in the along-track direction. The paper considers a swarm of 3U CubeSats in LEO, their form-factor is suitable for the aerodynamic control since the ratio of the satellite maximum to minimum cross-section areas is 3. Each satellite is provided with the information about the relative motion of neighboring satellites inside a specified communication area. The paper develops the corresponding decentralized control algorithms using the differential drag force. The required attitude control for each satellite is implemented by the active magnetic attitude control system. A set of decentralized control strategies is proposed taking into account the communicational constraints. The performance of these strategies is studied numerically. The swarm separation effect is demonstrated and investigated.  相似文献   

4.
Lake water height is a key variable in water cycle and climate change studies, which is achievable using satellite altimetry constellation. A method based on data processing of altimetry from several satellites has been developed to interpolate mean lake surface (MLS) over a set of 22 big lakes distributed on the Earth. It has been applied on nadir radar altimeters in Low Resolution Mode (LRM: Jason-3, Saral/AltiKa, CryoSat-2) in Synthetic Aperture Radar (SAR) mode (Sentinel-3A), and in SAR interferometric (SARin) mode (CryoSat-2), and on laser altimetry (ICESat). Validation of the method has been performed using a set of kinematic GPS height profiles from 18 field campaigns over the lake Issykkul, by comparison of altimetry’s height at crossover points for the other lakes and using the laser altimetry on ICESat-2 mission. The precision reached ranges from 3 to 7 cm RMS (Root Mean Square) depending on the lakes. Currently, lake water level inferred from satellite altimetry is provided with respect to an ellipsoid. Ellipsoidal heights are converted into orthométric heights using geoid models interpolated along the satellite tracks. These global geoid models were inferred from geodetic satellite missions coupled with absolute and regional anomaly gravity data sets spread over the Earth. However, the spatial resolution of the current geoid models does not allow capturing short wavelength undulations that may reach decimeters in mountaineering regions or for rift lakes (Baikal, Issykkul, Malawi, Tanganika). We interpolate in this work the geoid height anomalies with three recent geoid models, the EGM2008, XGM2016 and EIGEN-6C4d, and compare them with the Mean Surface of 22 lakes calculated using satellite altimetry. Assuming that MLS mimics the local undulations of the geoid, our study shows that over a large set of lakes (in East Africa, Andean mountain and Central Asia), short wavelength undulations of the geoid in poorly sampled areas can be derived using satellite altimetry. The models used in this study present very similar geographical patterns when compared to MLS. The precision of the models largely depends on the location of the lakes and is about 18 cm, in average over the Earth. MLS can serve as a validation dataset for any future geoid model. It will also be useful for validation of the future mission SWOT (Surface Water and Ocean Topography) which will measure and map water heights over the lakes with a high horizontal resolution of 250 by 250 m.  相似文献   

5.
The large elongated orbit planned for NOZOMI around Mars, i.e. a periapsis of 150 km and an apoapsis of 15 RM (RM denotes the radius of Mars), will provide many occasions for encounters of NOZOMI with two Martian satellites, Phobos and Deimos, where NOZOMI is the former Planet-B meaning “Hope” in Japanese. We present a plan for imaging the two satellites by the Mars Imaging Camera (MIC) on board NOZOMI at such encounters during the mission lifetime of two years from October 1999. An Autonomous Tracking Mode is available for fly-by imaging of satellites. MIC scans the azimuth direction (orthogonal to the CCD line arrays) using the spacecraft spin at a rotation rate of 7.5 rpm, and has an image resolution of 80 arc second in both elevation and azimuth directions.The main science objectives of MIC, related to the two satellites, are (i) to study the size/spatial distributions of craters on both satellites, (ii) to examine the groove structure on Phobos, (iii) to image areas not yet seen areas of Deimos, and (iv) to derive its whole shape. We will, furthermore, search for the dust rings along the orbits of these two satellites in the forward scattering region of sunlight. The capability of MIC to execute these objectives are briefly summarized.  相似文献   

6.
为解决多约束条件下飞行器在轨服务任务分配问题,以在轨卫星群为研究对象,提出了一种基于离散粒子群算法的多服务飞行器的目标分配方法,综合分析目标飞行器价值、服务飞行器消耗以及能量时间消耗等3项关键指标因素,建立了在轨服务任务分配问题的数学模型。通过构建粒子与实际问题间的对应关系,设计了新的离散粒子群位置和速度更新公式求解任务分配问题。仿真结果表明:离散粒子群算法具有收敛速度快,寻优能力强等优点,能够有效地解决多约束条件下的服务飞行器协同任务分配问题。  相似文献   

7.
中国航天器工程 40多年来经历了技术准备阶段、技术试验阶段和工程应用阶段 ,已形成了返回式遥感卫星系列 ,通信广播卫星系列 ,气象卫星系列和科学探测与技术试验卫星系列 ,而地球资源卫星系列和导航定位卫星系列也即将形成 ;至今中国已发射成功人造地球卫星 5 1颗 ,发射成功试验载人飞船 4艘 ,取得了举世瞩目的成就 ,为国民经济、国防建设、文化教育和科学研究作出了重大的贡献。进入 2 1世纪 ,根据中国航天近期和远期的发展目标 ,中国航天器工程将迎来新的辉煌  相似文献   

8.
9.
10.
The Gravity Recovery and Climate Experiment (GRACE) satellite mission has been estimating temporal changes in the Earth’s gravitational field since its launch in 2002. While it is not yet fully resolved what the limiting source of error is for GRACE, studies on future missions have shown that temporal aliasing errors due to undersampling signals of interest (such as hydrological variations) and errors in atmospheric, ocean, and tide models will be a limiting source of error for missions taking advantage of improved technologies (flying drag-free with a laser interferometer). This paper explores the option of reducing the effects of temporal aliasing errors by directly estimating low degree and order gravity fields at short time intervals, ultimately resulting in data products with improved spatial resolution. Three potential architectures are considered: a single pair of polar orbiting satellites, two pairs of polar orbiting satellites, and a polar orbiting pair of satellites coupled with a lower inclined pair of satellites. Results show that improvements in spatial resolution are obtained when one estimates a low resolution gravity field every two days for the case of a single pair of satellites, and every day for the case of two polar pairs of satellites. However, the spatial resolution for these cases is still lower than that provided by simply destriping and smoothing the solutions via standard GRACE post-processing techniques. Alternately, estimating daily gravity fields for the case of a polar pair of satellites coupled with a lower inclined pair results in solutions with superior spatial resolution than that offered by simply destriping and smoothing the solutions.  相似文献   

11.
Since 1978 a number of satellite borne sensors have been used to measure the composition of the earth's atmosphere. These include the LIMS and SAMS instruments on the Nimbus 7 satellite (launched in October 1978), the SAGE instrument on the AEM2 satellite (launched in february 1979) and various instruments on the SME spacecraft (launched October 1981). For many species, these have provided the first abundance measurements with high spatial and temporal resolution and with global coverage. In this paper the composition measurements that have become available from these programs will be reviewed. The paper will then describe some recent studies that have made use of the new data. As it is the exclusive subject of another invited paper, ozone will not be discussed in in any detail.  相似文献   

12.
针对空间动目标指向任务对卫星提出的高精度控制需求,研究了卫星星体/快反镜二级复合系统的指向控制问题,给出了一种空间运动目标高精度指向控制方法。首先,基于近圆轨道Clohessy Wiltshire方程获得追踪卫星与目标卫星的位置信息;然后,基于扩展Kalman滤波算法进行多信息融合确定追踪卫星姿态参数,并实时解算出追踪卫星载荷光轴与目标卫星的相对姿态,获得跟踪指向所需的方位角和俯仰角;最后,通过星体一级姿态控制和基于快反镜的载荷光轴二级指向控制,实现对目标卫星的快速、高精度指向。仿真结果表明,该方法可以在保证快速性的同时实现动态指向控制误差小于072″。该方法可以实现对空间目标的高精度指向控制,为未来空间中激光通信等航天任务提供技术支持。  相似文献   

13.
Recent developments have seen a trend towards larger constellations of spacecraft, with some proposals featuring constellations of more than 10.000 satellites. While similar concepts for large constellations already existed in the past, traditional satellite deployments hardly ever feature groups of more than 100 satellites. This trend towards considerably larger satellite numbers originates from non-traditional design and operations of spacecraft by non-traditional space companies. The evolution in the space sector, precipitated by new players, is often referred to as “Space 4.0” or “New Space”. It necessitates a rethinking of the way satellites and satellite constellations are planned, designed, and operated. New operational paradigms are needed to enable automatic, optimal task definition, and scheduling in a holistic approach.This is the second of two companion papers that investigate the operations of distributed satellite systems. This second article investigates the classification of distributed satellite systems and evaluates commercial tools for automated spacecraft operations, whereas the first article performed a survey of conventional and “new space”operations of spacecraft constellations.Classification metrics for constellations are derived and evaluated with respect to their informative value concerning the operation, the automation, and the scalability of the constellation. The proposed classification system is applied to the Dove and RapidEye constellation and allows for a comparison between the presented automation approaches. Commercial tools for automated spacecraft operations are evaluated for several mission task elements, such as orbit control, orbit maintenance, and collision avoidance. Subsequently, the trends, benefits, and standardization needs for operational automation are identified.  相似文献   

14.
现代小卫星及其关键技术   总被引:13,自引:1,他引:12  
工程技术和科学、艺术一样,发展最终的目标将追求简化性和完善性。现代小卫星出现,说明航天技术正沿着这条规律向前发展。由于小卫星具有质量轻、体积小、成本低、性能高、研制周期短的显著优点,人们预测:小卫星发展将引起卫星应用和卫星技术方面一场重大变革。首先论述小卫星的概念和兴起的原因;其次讨论小卫星发展概况;最后研究小卫星关键技术。  相似文献   

15.
椭圆轨道卫星空间任意位置悬停的方法   总被引:3,自引:0,他引:3  
对任务星施加持续的控制加速度,使其在飞行过程中相对于目标卫星的空间位置保持不变,即实现任意位置悬停飞行。通过对任务星与目标星的相对运行分析和重力差异补偿分析,给出了在飞行过程中任务星相对于运行在椭圆轨道上的目标星实现任意位置悬停所需的径向、切向和法向控制加速度公式。最后对典型悬停飞行过程进行了动力学仿真,并对不同悬停飞行任务的能量消耗进行了对比分析,表明在一段时间内对任务星进行轨道悬停是可行的。  相似文献   

16.
迄今为止飞得最快的航天器、人类发射的第一个冥王星探测器——"新视野号",经过约9年的行星际旅行,于2015年1月15日抵达距地球约47亿千米的冥王星附近,开始探测冥王星、冥卫、以及它们所处的柯伊柏带其他天体。柯伊柏带是1992年才发现的太阳系新大陆,虽然冥王星已被重新定义为矮行星,却从一颗颇具争议的行星成为数千颗冰冻小天体的"领头羊"。本文介绍了"新视野号"的科学目标和有效载荷,分析了"新视野号"采用的探测器长期休眠、木星借力、太空核能等关键技术,探讨了冥王星和柯伊柏带探测的意义。作为太阳系的冷库,柯伊伯带天体保留着太阳系形成时的原始状态,对它的探测,有助于揭示太阳系行星形成时的关键环节。"新视野号"也可能发现新的太阳系行星,其成果将有助于我们更深入地认识太阳系。  相似文献   

17.
Global navigation satellite systems (GNSS) receivers can be used in time and frequency metrology by exploiting stable GNSS time scales. This paper proposes a low-cost method for precise measurement of oscillator frequency instability using a single-frequency software GNSS receiver. The only required hardware is a common radio frequency (RF) data collection device driven by the oscillator under test (OUT). The receiver solves the oscillator frequency error in high time resolution using the carrier Doppler observation and the broadcast ephemeris from one of the available satellites employing the onboard reference atomic frequency standard that is more stable than the OUT. Considering the non-stable and non-Gaussian properties of the frequency error measurement, an unbiased finite impulse response (FIR) filter is employed to obtain robust estimation and filter out measurement noise. The effects of different filter orders and convolution lengths are further discussed. The frequency error of an oven controlled oscillator (OCXO) is measured using live Beidou-2/Compass signals. The results are compared with the synchronous measurement using a specialized phase comparator with the standard coordinated universal time (UTC) signal from the master clock H226 in the national time service center (NTSC) of China as its reference. The Allan deviation (ADEV) estimates using the two methods have a 99.9% correlation coefficient and a 0.6% mean relative difference over 1–1000 s intervals. The experiment demonstrates the effectiveness and high precision of the software receiver method.  相似文献   

18.
19.
PSO选星算法参数分析与改进   总被引:1,自引:0,他引:1  
多星座组合导航提供更多的可用卫星,但也增大接收机计算复杂度,选取部分可见星代替全部可见星进行接收机位置解算成为选星算法研究的热点。粒子群优化(PSO)选星算法将PSO算法引入到选星过程中,该方法能够减少选星时间,实现北斗/GPS组合星座快速选星。研究了该算法的关键参数包括惯性权重因子、加速系数、种群大小等对PSO选星算法性能的影响,并针对搜索过程容易陷入局部最优问题,提出自适应模拟退火粒子群优化(ASAPSO)选星算法,该算法通过引入随适应值大小自适应调整进化参数及结合模拟退火算法调整粒子速度,以增强算法跳出局部极值的能力。采用实际数据对算法进行验证,结果表明:ASAPSO选星算法在保证选星时间的同时,能够提高算法搜索结果的准确性,其性能优于PSO选星算法。   相似文献   

20.
To make up for the insufficiency of earth-based TT&C systems, the use of GNSS technology for high-orbit spacecraft navigation and orbit determination has become a new technology. It is of great value to applying Geosynchronous Earth Orbit (GEO) and Inclined GeoStationary Orbit (IGSO) navigation satellites for supporting the navigation of high-orbit spacecraft since there are three different types of navigation satellites in BeiDou Navigation Satellite System (BDS): Medium Earth Orbit (MEO), GEO and IGSO. This paper conducts simulation experiments based on Two-Line Orbital Element (TLE) data to analyze and demonstrate the role of these satellites in the navigation of high-orbit spacecraft. Firstly, the spacecraft in GEO was used as the target satellite to conduct navigation experiments. Experiments show that for the spacecraft on the GEO orbit, after adding GEO and IGSO respectively on the basis of receiving MEO navigation satellite signals, the accuracies were improved by 7.22 % and 6.06 % respectively. When adding both GEO and IGSO navigation satellites at the same time, the accuracy can reach 16 m. In the second place, navigation and positioning experiments were carried out on three high elliptical orbit (HEO) satellites with different semimajor axis (32037.2 km, 42385.9 km, 67509.6 km). The experiments show that the number of visible satellites has been improved significantly after adding GEO and IGSO navigation satellites at the same time. The visible satellites in these three orbits were improved by 32.84 %, 41.12 % and 37.68 %, respectively compared with only observing MEO satellites.The RMS values of the navigation positioning errors of these three orbits are 25.59 m, 87.58 m and 712.48 m, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号