首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32篇
  免费   0篇
航空   18篇
航天技术   7篇
航天   7篇
  2018年   1篇
  2016年   4篇
  2014年   2篇
  2013年   4篇
  2012年   2篇
  2011年   2篇
  2010年   2篇
  2009年   2篇
  2008年   1篇
  2007年   4篇
  2006年   1篇
  2004年   1篇
  2002年   1篇
  2001年   1篇
  1999年   2篇
  1996年   1篇
  1994年   1篇
排序方式: 共有32条查询结果,搜索用时 15 毫秒
1.
The fastest pulsar and the slowest nova; the oldest galaxies and the youngest stars; the weirdest life forms and the commonest dwarfs; the highest energy particles and the lowest energy photons. These were some of the extremes of Astrophysics 2006. We attempt also to bring you updates on things of which there is currently only one (habitable planets, the Sun, and the Universe) and others of which there are always many, like meteors and molecules, black holes and binaries.  相似文献   
2.
The Cassini-Huygens Cosmic Dust Analyzer (CDA) is intended to provide direct observations of dust grains with masses between 10−19 and 10−9 kg in interplanetary space and in the jovian and saturnian systems, to investigate their physical, chemical and dynamical properties as functions of the distances to the Sun, to Jupiter and to Saturn and its satellites and rings, to study their interaction with the saturnian rings, satellites and magnetosphere. Chemical composition of interplanetary meteoroids will be compared with asteroidal and cometary dust, as well as with Saturn dust, ejecta from rings and satellites. Ring and satellites phenomena which might be effects of meteoroid impacts will be compared with the interplanetary dust environment. Electrical charges of particulate matter in the magnetosphere and its consequences will be studied, e.g. the effects of the ambient plasma and the magnetic field on the trajectories of dust particles as well as fragmentation of particles due to electrostatic disruption.The investigation will be performed with an instrument that measures the mass, composition, electric charge, speed, and flight direction of individual dust particles. It is a highly reliable and versatile instrument with a mass sensitivity 106 times higher than that of the Pioneer 10 and 11 dust detectors which measured dust in the saturnian system. The Cosmic Dust Analyzer has significant inheritance from former space instrumentation developed for the VEGA, Giotto, Galileo, and Ulysses missions. It will reliably measure impacts from as low as 1 impact per month up to 104 impacts per second. The instrument weighs 17 kg and consumes 12 W, the integrated time-of-flight mass spectrometer has a mass resolution of up to 50. The nominal data transmission rate is 524 bits/s and varies between 50 and 4192 bps.This revised version was published online in July 2005 with a corrected cover date.  相似文献   
3.
DORIS is one of the four space-geodetic techniques participating in the Global Geodetic Observing System (GGOS), particularly to maintain and disseminate the Terrestrial Reference Frame as determined by International Earth rotation and Reference frame Service (IERS). A few years ago, under the umbrella of the International Association of Geodesy, a DORIS International Service (IDS) was created in order to foster international cooperation and to provide new scientific products. This paper addresses the organizational aspects of the IDS and presents some recent DORIS scientific results. It is for the first time that, in preparation of the ITRF2008, seven Analysis Centers (AC’s) contributed to derive long-term time series of DORIS stations positions. These solutions were then combined into a homogeneous time series IDS-2 for which a precision of less than 10 mm was obtained. Orbit comparisons between the various AC’s showed an excellent agreement in the radial component, both for the SPOT satellites (e.g. 0.5–2.1 cm RMS for SPOT-2) and Envisat (0.9–2.1 cm RMS), using different software packages, models, corrections and analysis strategies. There is now a wide international participation within IDS that should lead to future improvements in DORIS analysis strategies and DORIS-derived geodetic products.  相似文献   
4.
The dynamics of dust particles in the solar system is dominated by solar gravity, by solar radiation pressure, or by electromagnetic interaction of charged dust grains with the interplanetary magnetic field. For micron-sized or bigger dust particles solar gravity leads to speeds of about 30 to 40 km s–1 at the Earths distance. Smaller particles that are generated close to the Sun and for which radiation pressure is dominant (the ratio of radiation pressure force over gravity F rad/F grav is generally termed ) are driven out of the solar system on hyperbolic orbits. Such a flow of -meteoroids has been observed by the Pioneer 8, 9 and Ulysses spaceprobes. Dust particles in interplanetary space are electrically charged to typically +5 V by the photo effect from solar UV radiation. The dust detector on Cassini for the first time measured the dust charge directly. The dynamics of dust particles smaller than about 0.1 m is dominated by the electromagnetic interaction with the ambient magnetic field. Effects of the solar wind magnetic field on interstellar grains passing through the solar system have been observed. Nanometer sized dust stream particles have been found which were accelerated by Jupiters magnetic field to speeds of about 300 km s–1.  相似文献   
5.
Self-organization is a property of dissipative nonlinear processes that are governed by a global driving force and a local positive feedback mechanism, which creates regular geometric and/or temporal patterns, and decreases the entropy locally, in contrast to random processes. Here we investigate for the first time a comprehensive number of (17) self-organization processes that operate in planetary physics, solar physics, stellar physics, galactic physics, and cosmology. Self-organizing systems create spontaneous “order out of randomness”, during the evolution from an initially disordered system to an ordered quasi-stationary system, mostly by quasi-periodic limit-cycle dynamics, but also by harmonic (mechanical or gyromagnetic) resonances. The global driving force can be due to gravity, electromagnetic forces, mechanical forces (e.g., rotation or differential rotation), thermal pressure, or acceleration of nonthermal particles, while the positive feedback mechanism is often an instability, such as the magneto-rotational (Balbus-Hawley) instability, the convective (Rayleigh-Bénard) instability, turbulence, vortex attraction, magnetic reconnection, plasma condensation, or a loss-cone instability. Physical models of astrophysical self-organization processes require hydrodynamic, magneto-hydrodynamic (MHD), plasma, or N-body simulations. Analytical formulations of self-organizing systems generally involve coupled differential equations with limit-cycle solutions of the Lotka-Volterra or Hopf-bifurcation type.  相似文献   
6.
On November 1, 2011, at 05:58 local time, the Chinese spaceship Shenzhou-8 was launched for a 17-day mission with a Long March rocket from the Jiuquan Satellite Launch Center in the Mongolia desert. On board was the German SIMBOX (Science in Microgravity Box) experimental facility containing 17 bio-medical experiments, which were conducted by German researchers together with their Chinese colleagues. It was the first time that China cooperated with a European nation in the scientific utilization of Shenzhou – the core element of China's human spaceflight programme.  相似文献   
7.
Orbital robotics focuses on a variety of applications, as e.g. inspection and repair activities, spacecraft construction or orbit corrections. On-Orbit Servicing (OOS) activities have to be closely monitored by operators on ground. A direct contact to the spacecraft in Low Earth Orbit (LEO) is limiting the operational time of the robotic application. Therefore, geostationary satellites are desirable to relay the OOS signals and extend the servicing time window. A geostationary satellite in the communication chain not only introduces additional boundary conditions to the mission but also increases the time delay in the system. The latter is not very critical if the servicer satellite is operating autonomously. However, if the servicer is operating in a supervised control regime with a human in the loop, the increased time delay will have an impact on the operator’s task performance.  相似文献   
8.
Abstract

Many neuro-imaging studies have provided evidence that the parietal cortex plays a key role in reasoning based on mental models, which are supposed to be of abstract spatial nature. However, these studies have also shown concurrent activation in vision-related cortical areas which have often been interpreted as evidence for the role of visual mental imagery in reasoning. The aim of the paper is to resolve the inconsistencies in the previous literature on reasoning and imagery and to develop a neurally and cognitively plausible theory of human relational reasoning. The main assumption is that visual brain areas are only involved if the problem information is easy to visualize and when this information must be processed and maintained in visual working memory. A regular reasoning process, however, does not involve visual images but more abstract spatial representations—spatial mental models—held in parietal cortices. Only these spatial representations are crucial for the genuine reasoning processes.  相似文献   
9.
10.
Interstellar dust was first identified by the dust sensor onboard Ulysses after the Jupiter flyby in February 1992. These findings were confirmed by the Galileo experiment on its outbound orbit from Earth to Jupiter. Although modeling results show that interstellar dust is also present at the Earth orbit, a direct identification of interstellar grains from geometrical arguments is only possible outside of 2.5 AU. The flux of interstellar dust with masses greater than 6 · 10–14 g is about 1 · 10–4 m –2 s –1 at ecliptic latitudes and at heliocentric distances greater than 1AU. The mean mass of the interstellar particles is 3 · 10–13 g. The flux arrives from a direction which is compatible with the influx direction of the interstellar neutral Helium of 252° longitude and 5.2° latitude but it may deviate from this direction by 15 – 20°.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号