首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
使用动态力学分析仪(DMA)、扫描电子显微镜(SEM)对具有形状记忆的含氟聚醚醚酮(6F-PEEK)改性环氧树脂的动态热力学行为和组分之间的相分离形貌进行了研究.动态力学-温度谱图表明,在130℃和223℃存在两个内耗峰,分别对应6F-PEEK和环氧树脂的玻璃化转变温度.具有较低玻璃化转变温度的6F-PEEK充当可逆相,具有较高玻璃化转变温度的环氧树脂充当固定相.材料在变形时,6F-PEEK的能量变化主要是熵的变化,而环氧树脂主要是内聚能的变化.熵值增大和内聚能的释放是材料完成形状记忆过程的驱动力.随6F-PEEK含量的增加,动态力学-温度谱图上的内耗峰的强度增加,表明在变形温度下有更多的6F-PEEK分子链段发生运动,材料的弯曲变形幅度增大.  相似文献   

2.
水发泡剂对聚酰亚胺泡沫结构与性能的影响   总被引:1,自引:0,他引:1  
采用一步法制备了一种聚酰亚胺(PI)泡沫,研究了水含量对聚酰亚胺泡沫结构和性能的影响规律。采用红外光谱(FTIR)和扫描电镜(SEM)分别表征了聚酰亚胺泡沫的分子结构和泡孔结构;采用热机械分析(TMA)和热失重分析(TGA)分别测试了聚酰亚胺泡沫的玻璃化转变温度和热稳定性;采用双通道声学分析仪测试了聚酰亚胺泡沫的吸声性能。研究表明:在所研究的水含量范围内,用水含量对聚酰亚胺泡沫的分子结构、玻璃化转变温度和热失重性能几乎无影响;驻波管法测得PI泡沫的平均吸声系数最大为0.44;玻璃化转变温度为294.7~295.6℃,热失重5%时的温度大于377.5℃,800℃时的残余质量大于49.6%。  相似文献   

3.
用液体端羧基丁腈(CTBN)和氰酸脂(CE)在一定条件下,经适度共聚,制备出一种新型具有较高玻璃化转变温度(Tg)的氰酸酯树脂形状记忆体系。运用红外,动态力学性能分析,力学性能分析,形状记忆性能分析等方法对该体系进行了研究。结果表明:CTBN适当含量可以使氰酸酯树脂具有优异的形状记忆性能;最低的Tg为138℃,体系的最大形变回复率为100%,最大形变恢复速率0.024 s-1,最大拉伸形变为51%。在120℃/2h+140℃/2h+160℃/2h+180℃/1h的固化工艺下体系基本完全反应。  相似文献   

4.
以一种VARI(Vacuum Assisted Resin Infusion)成型工艺用环氧树脂RTM6-2为基体,研究了其固化特性,并使用VARI工艺制备了碳纤维增强复合材料层合板,对其性能进行了研究。结果表明:RTM6-2的工艺操作温度为100±10℃,工艺温度下的适用期可达7~9h,树脂浇铸体的经过180℃固化后的玻璃化转变温度为203℃~207℃;层合板的纤维体积含量在56%~57%之间,孔隙率小于1%,玻璃化转变温度为160℃~167℃。同时,通过试验得到了层合板的力学性能。  相似文献   

5.
NEPE推进剂动态力学特性分析   总被引:1,自引:0,他引:1       下载免费PDF全文
高艳宾  陈雄  许进升  胡少青 《推进技术》2015,36(9):1410-1415
为了研究NEPE推进剂在不同温度和频率激励作用下的动态力学性能,利用DMAELF3200动态热机械分析仪测定了材料动态力学参数。通过试验,获得了推进剂的储能模量、损耗模量及损耗因子温度谱。由分子运动理论得到了玻璃化转活化能。基于时间-温度等效原理对NEPE推进剂动态粘弹性参数进行等效叠加,得到了移位因子随试验温度变化的规律。结果表明:损耗模量的温度谱曲线在低温段只存在一个峰值(玻璃化转变峰),玻璃化转变温度对频率有依赖性,在1Hz加载频率下转变温度为-62℃;玻璃化转变所需要的活化能为163.8k J·mol-1;移位因子和温度之间的关系遵循Williams-Landel-Ferry(WLF)方程,随试验温度升高,移位因子下降。  相似文献   

6.
推进剂用热塑性聚氨酯弹性体的合成及表征   总被引:5,自引:0,他引:5       下载免费PDF全文
何吉宇  谭惠民 《推进技术》2004,25(3):271-273
以聚己二酸乙二醇酯(PEA)、环氧乙烷 四氢呋喃无规共聚醚(PET),异佛尔酮二异氰酸酯(IPDI)及1,4 丁二醇(BDO)为原料;采用熔融二步法合成了一种能为硝酸酯增塑并满足推进剂使用要求的醚 酯共聚型热塑性聚氨酯弹性体(TPUE)。采用凝胶渗透色谱(GPC),傅里叶变换红外光谱FTIR,力学性能测试和硝化甘油吸收实验等对TPUE进行表征。结果表明,制备的TPUE具有较高的相对分子质量(Mn>50000)和聚氨酯的结构特征,软段具有较低的玻璃化转变温度,以及具有与硝酸酯良好的相容性,具有满足推进剂使用要求的力学性能。  相似文献   

7.
采用1,4-双(3'-氨基-5'-三氟甲基苯氧基)联苯(m-TFDAB)为二胺单体,分别与两种联苯型二酐单体,3,3',4,4'-联苯四甲酸二酐(s-8BPDA)以及2,3,3',4'-联苯四甲酸二酐(a-BPDA)通过一步高温溶液缩聚法制备了两种聚酰亚胺材料PI-1(s-BPDA/m-TFDAB)与PI-2(a-BPDA/m-TFDAB).研究结果表明,不对称化结构没有对聚酰亚胺材料的耐热性能、力学性能以及电性能产生显著影响.但可以显著增大聚酰亚胺在有机溶剂中的溶解性以及在可见光范围内的透明性.PI-2不仅可以溶解于极性非质子性溶剂中,而且在许多常规溶剂中也具有优良的溶解性能.PI-2薄膜在可见光波长范围内具有优良的透明性,450nm处的透光率达到86%.此外,该材料在氮气中的起始热分解温度超过580℃,而700℃时的残余重量百分数达到67%.  相似文献   

8.
利用主链含有吡啶环的新型四胺单体,2,6-双(3,’4’-二氨基苯基)-4-氟苯基吡啶(FP-PA)与几种芳香族四酸二酐单体,2,2-双[4-(3,’4’-二羧基苯氧基)苯基]丙烷二酐(BPADA)、3,3,’4,4’-二苯醚四羧酸二酐(ODPA)、3,3,’4,4’-二苯甲酮四羧酸二酐(BTDA)或4,4’-(六氟异丙基)双邻苯二甲酸二酐(6FDA)通过热缩聚、热环化反应成功制备了一系列具有半梯形主链结构的芳杂环聚合物-聚吡咙(PPy)。结果表明:所制备的聚吡咙具有优异的耐热稳定性;其玻璃化转变温度达到367℃,在氮气氛围中的起始热分解温度超过500℃,10%失重温度超过560℃,750℃时的殘重率超过60%。另外,聚吡咙薄膜表现出优良的耐碱水解性能,在10%NaOH水溶液中浸泡7d后仍具有优良的柔韧性和耐热性。  相似文献   

9.
液压油环境中丁腈橡胶的贮存寿命及老化性能   总被引:1,自引:1,他引:0       下载免费PDF全文
以丁腈橡胶为研究对象进行了10~#液压油介质中4种温度两种压缩比的加速老化试验,并对自然贮存12 a的丁腈橡胶材料进行恒压永久变形率测试。采用红外光谱、DSC及TGA对自然贮存12 a后及新制备的丁腈橡胶的分子结构、玻璃化转变温度及热性能进行了对比分析。结果表明:通过加速老化试验方法推算得到的丁腈橡胶贮存寿命可靠性较高,材料贮存12 a后未发生明显老化。  相似文献   

10.
本文通过对HTPB复合固体推进剂在宽广温度范围内、定应变条件下单轴应力松弛的实验测定,根据线性粘弹及热流变简单性的基本假设,将-50℃到80℃间 一个温度下的应力松弛曲线,采用时间~温度折合变量的数据处理方法,迭加成-40℃、20℃及70℃三个参考温度下主松弛模量随推进剂时间特性的变化曲线,并用Prony级数式及修正的幂函数式描述;还通过玻璃化转变温度的测定和图解法求出的时间~温度偏移因子建立了该推进剂材料修正的WLF方程;同时就端部粘木试样和传统的哑铃形试样对试验结果的影响进行了比较。  相似文献   

11.
将顺丁烯二酸酐(MA)与不同比例的氢化环氧树脂、聚丙二醇二缩水甘油醚(PPGDGE)共混,经完全固化制备出一种新型的形状记忆氢化环氧树脂体系。利用DMA,DSC、弯曲测试和U型形状记忆测试系统研究了该固化体系的动态力学性能、力学性能和形状记忆性能,结果表明:该固化体系交联点之间存在较长的柔性链段,导致部分结晶现象的出现;固化体系的玻璃化转变温度(Tg)最高达124℃,并且Tg随PPGDGE含量的增加而线性降低;该形状记忆氢化环氧固化体系具有优良的形状记忆性能,经过5次形状记忆测试,变形的试样均能在数分钟内完全恢复到变形前的状态,形变恢复率达100%。  相似文献   

12.
热塑性弹性体在复合改性双基推进剂中的应用   总被引:4,自引:1,他引:3       下载免费PDF全文
采用FTIR、动态热机械分析和单轴拉伸试验方法对所合成的P(E-CO-T)-IPDI-BDO热塑性弹性体(TPU)的性能进行了表征,并对P(E-CO-T)-IPDI-BDO预聚物在复合改性双基推进剂及其粘合剂体系中的应用进行了初步的探讨。结果显示,当-NCO与-OH的当量数之比R取1.2时,P(E-CO-T)-IPDI-BDO胶片的力学性能较好,随着硬段含量的增加,拉伸强度逐步增加,最大能达到11.6 MPa,断裂延伸率呈现逐步递减的趋势。P(E-CO-T)-IPDI-BDO预聚体中-NCO与硝化纤维素NC上的-OH的化学交联使最大拉伸强度从2.07 MPa提高到2.95 MPa,断裂延伸率从110.5%提高到224.0%。加入P(E-CO-T)-IPDI-BDO预聚物的复合改性双基推进剂的动态力学性能显示,由损耗峰tanδ的高温峰确定推进剂的玻璃化转化温度Tg为27.0℃,低温峰说明在低于-37.2℃下推进剂仍能承受一定的动态载荷。  相似文献   

13.
对一种新型RTM用双马来酰亚胺树脂R801的固化反应特性、成型工艺及其制备的复合材料性能进行了研究,DSC曲线表明该树脂体系的固化温度为170~220℃;黏度随温度变化曲线表明在70~120℃,树脂黏度增长缓慢,具有不少于7 h的适用期;在90℃左右时,其初始黏度<100 mPa.s,工艺操作窗口时间≥10 h;该树脂制备的MT300碳纤维复合材料在300℃时的压缩、弯曲、层剪性能保持率均≥63%。  相似文献   

14.
为探究端羟基聚丁二烯(HTPB)推进剂在低温下的疲劳特性,结合空空导弹在使用中的实际情况设计了包含不同应变幅值和加载频率的高周疲劳实验.实验在动态热机械分析仪上进行,温度保持为-50℃,加载频率设定为50,100,150Hz.为了考察低温下HTPB推进剂微小预变形对疲劳特性的影响,在动力循环加载前进行了准静态加载.疲劳实验后对试件实施单轴恒速拉伸,以获取疲劳后推进剂的力学参数.结果表明:在其他条件不变的情况下,疲劳应变幅值和加载频率越大,材料力学性能劣化程度越大,所累积的疲劳损伤量越大.初始阶段的准静态加载对推进剂疲劳特性起消极影响,低温高频下推进剂的疲劳损伤演化呈现出非线性,随着疲劳次数的增加,疲劳损伤增速由快变缓.   相似文献   

15.
纳米PA6、PP/SBS复合材料界面结构与性能   总被引:6,自引:0,他引:6  
采用磨盘型力化学反应器制备纳米尺寸的 PA6和 PP微粒 ,与 SBS复合制备纳米 PA6、PP/ SBS复合材料 ,用 TEM研究复合材料的界面结构并进行力学性能测试。经磨盘反应器制备的 PA6和 PP混合粒子 ,与 SBS的相容性得到改善 ,相界面结合良好 ,填充量在 6 % -1 0 %时 ,综合力学性能大幅度提高。随加工温度变化 ,PA6、PP相结构也发生变化 ,产生粘连并形成链状结构 ,力学性能进一步提高。  相似文献   

16.
宽使用温度范围的丁羟高燃速推进剂配方研究   总被引:1,自引:3,他引:1       下载免费PDF全文
鲁国林  尹瑞康  刘爚 《推进技术》2001,22(2):162-164
研究了细AP含量、增塑剂癸二酸二异辛酯(DOS)含量和键合剂LW1等因素对HTPB/IPDI高燃烧推进剂-55℃低温力学性能的影响,获得了一个使用范围广(-55℃-+70℃)、综合性能优良的丁羟高燃速推进剂配方。该推进剂除具有能量高、燃速高等特点外,还有优良的力学性能。70℃最大抗拉强度(σm)蒺、MPa,25℃,70℃最大伸长率(εm)大于45%,-55℃时的伸长率大于30%。  相似文献   

17.
合成了两种以苯乙炔基封端的聚酰亚胺树脂,并对其熔体黏度、热性能和力学性能进行了研究。结果表明,两种树脂在280℃/2h的熔体黏度均小于1Pa.s,并具有良好的熔体黏度稳定性,可以用RTM的方法加工成型。PI-1树脂的Tg和T5d分别是402和534℃,PI-2树脂的Tg和Td5分别是356和525℃。碳纤维增强的PI-1基复合材料在300℃下具有大于70%的性能保持率。  相似文献   

18.
改进单晶高温合金性能的途径   总被引:1,自引:0,他引:1  
采用籽晶法在自制的高温高梯度LMC定向凝固设备上制取了以平面、胞状、粗枝以及细枝界面形态凝固的NASAIR100单晶。研究了其铸态以及经1280℃、1300℃和1320℃×4hA.C.处理的组织和性能。结果表明,快速的抽拉速率和尽可能高的固溶温度显著改善单晶高温合金的性能,在相同的抽拉速率下,高温度梯度显著降低显微疏松含量,缩小树枝晶间距,并且能够得到细小的、形状较规则的γ′相。  相似文献   

19.
为了考察基于α-BPDA聚酰亚胺复合材料的高温性能,制备了纤维增强复合材料,进行了高温力学和热物理性能的测试。研究结果表明纤维增强复合材料的T5d分解温度为565℃;Tg超过471℃;在450℃下的弯曲强度保持率大于42%,弯曲模量保持率大于55%,短梁剪切强度保持率超过44%;400℃空气热老化50 h后碳纤维复合材料的弯曲强度保持率66%,弯曲模量保持率为95%;300、500℃的石英增强复合材料的热导率分别为0.503和0.657 W/(m.K)。  相似文献   

20.
研究了热处理对新研制的定向凝固钴基高温合金DZ40M组织和性能的影响。结果表明 :12 80℃ / 4h固溶处理可完全溶解DZ40M合金中初生碳化物M7C3 和MC ,合金成为单相固溶体。95 0℃和 10 5 0℃时效处理可使DZ40M合金发生硬化 ,以 95 0℃时效硬化效果更为明显 ,相应的峰时效制度为 95 0℃ / 12h和 10 5 0℃ / 2 4h。时效处理引起M2 3 C6沉淀析出。 95 0℃ / 12h时效显著提高DZ40M合金室温强度和高温持久寿命 ,同时也减少了合金塑性 ,但合金仍保持一定的塑性。 10 5 0℃ / 2 4h虽然能增加室温拉伸性能 ,但削弱了高温持久性能  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号