首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
控制力矩陀螺属于航天器姿态控制与机动惯性执行机构,磁悬浮控制力矩陀螺具有输出力矩大、微振动、低噪声、长寿命等特点,是敏捷机动卫星、空间站、天空实验室等理想的惯性执行机构之一.在阐述磁悬浮控制力矩陀螺工作原理、结构特点的基础上,介绍了磁悬浮控制力矩陀螺的电磁设计原理、结构分布及控制系统设计过程.基于大型磁悬浮控制力矩陀螺的主要技术指标,详细分析了大型单框架磁悬浮控制力矩陀螺的三个关键技术和解决途径.包括大承载力永磁偏置磁轴承的设计、制造和控制技术;低功耗高速永磁无刷直流电机的设计、控制技术;低速高精度Halbach型框架电机设计、制造、装配和控制技术.为磁悬浮控制力矩陀螺的进一步工程化应用提供了有效的技术途径.  相似文献   

2.
振动陀螺是一种利用哥氏效应检测角速度的传感器,其谐振子的结构精度和阻尼均匀性限制了陀螺性能的提升。为减小谐振子结构与支撑锚点的影响,提出了一种全新概念的磁悬浮振动陀螺。该陀螺利用电磁悬浮的方法将谐振子悬空,从而简化了谐振子为无支撑锚点的集中质量块,降低了其结构精度要求,消除了机械结构阻尼,最终达到提升陀螺性能的目的。基于经典振动陀螺模型,理论分析了磁悬浮振动陀螺的基本工作原理,并说明了谐振子误差对陀螺性能的影响规律,设计了新型磁悬浮振动陀螺的结构,并对该结构的磁感应强度进行了仿真分析。仿真结果证明,悬浮质量块振动稳定,具有较好的磁场均匀性。最后对陀螺样机进行了测试,其固有频率为20Hz,标度因子约为1.6mV/[(°)/s],测试结果验证了所提磁悬浮振动结构的陀螺效应。  相似文献   

3.
三浮陀螺仪输出轴采用有源磁悬浮,系统工作在分时控制模式下,控制变量为总周期和周期内加力占空比.加力电源类型的选取以及加力电压幅值的确定对电磁力的大小、磁悬浮的功耗有很大影响,进而影响陀螺温度场分布和陀螺精度.在研究了磁悬浮元件电磁特性之后,给出了确定加力电源的基于磁路分析的Flux电磁仿真法.分析给出直流、正弦和方波这三种电源的加力幅值范围为1.7V~ 2V,并结合试验确定1.8V的方波电压加力为最佳方案.实验表明采用该方法分析加力电压是有效的,同时节省了大量实验探索的时间.  相似文献   

4.
高频电磁悬浮熔炼的设计与实践   总被引:4,自引:0,他引:4  
魏炳波  杨根仓 《航空学报》1988,10(12):589-597
 介绍了高频电磁悬浮熔炼技术的原理、悬浮力和吸收功率的理论计算,悬浮的稳定性、悬浮线圈的结构设计以及影响悬浮熔炼的工艺性因素。同时,给出了这方面的研究结果。  相似文献   

5.
多环谐振微机械陀螺的研究现状及发展趋势   总被引:1,自引:0,他引:1       下载免费PDF全文
微机械陀螺是一种新型的陀螺,近年来随着微机电技术的发展,其性能不断得到提高。基于多环谐振微机械陀螺的发展现状,详细评述了多环谐振陀螺的来源以及其由单环到多环的结构发生改变的优点。并基于驻波进动原理,介绍了两种新型的全对称谐振盘陀螺。总结了圆环谐振式微机械陀螺的工艺发展路线,由早期的HARPSS工艺发展到外延多晶硅封装工艺,再到材料性能好的单晶硅热压键合工艺,使得多环谐振陀螺的性能不断得以提升,并分析了其优缺点。最后,展望了未来的高新技术,提出多环谐振陀螺的发展方向。  相似文献   

6.
本文根据三浮陀螺仪磁悬浮轴承的结构特点,对造成磁悬浮干扰力矩的主要影响因素进行分析。基于力矩平衡的原理建立磁悬浮干扰力矩的检测装置,通过气浮支承形式实现小干扰、高灵敏度的检测要求,并对检测装置进行初始误差标定,从而提高检测准确度。开展基于磁悬浮轴承干扰力矩检测装置的应用试验,对比因磁悬浮轴承加工几何精度差异造成的干扰力矩影响差异,从而对磁悬浮轴承加工和组装提出新的工艺控制方法,以此有效降低仪表磁悬浮轴承工作干扰力矩,提高零次项漂移精度。  相似文献   

7.
磁悬浮火箭发动机推力测试台   总被引:1,自引:1,他引:0  
将电磁悬浮技术用于火箭发动机推力测试试验台是一次新的尝试。本文给出了应用电磁悬浮技术的发动机推力测试试验台的结构,推导了系统的运动方程,并对试验台进行了系统仿真。最后对整个试验台成功进行了多发现场试验,仿真结果和试验结果都表明电磁悬浮技术用于火箭发动机推力测试是成功的,提高了测试系统的性能和推力测试精度。  相似文献   

8.
提出一种基于漏磁与磁阻系数迭代计算的参数设计方法,将软磁材料内部磁场的磁通密度非饱和作为约束条件,以满足最大悬浮力条件下的体积最小化为优化设计目标,通过循环迭代的方式计算各部分漏磁系数与磁阻系数,最后得到该三自由度混合型磁悬浮轴承各部分的结构参数.利用有限元电磁场分析软件对其进行三维电磁场建模与仿真分析,仿真结果验证了该参数设计方法及其结果的合理性与正确性.给出了静态起浮、悬浮、冲击、转速为30000r/min时转轴位移与控制电流的波形.实验结果表明:基于该方法设计出的三自由度混合型磁悬浮轴承具有良好的悬浮特性.   相似文献   

9.
在陀螺加速度计磁悬浮定中测试实验中发现,当加表处于斜置状态时,磁悬浮不能使浮子轴精确定中,浮子轴两端出现了周期性的摆动。本文分析了这一现象的产生机理,并进一步从不同方面研究了磁悬浮不能使浮子轴精确定中对加表测量精度的影响,推导了误差公式。  相似文献   

10.
研究一种双定子磁悬浮开关磁阻电机。该电机采用内-外双定子结构,内定子和外定子上分别设置悬浮力绕组和转矩绕组。在结合拓扑结构说明其运行原理的基础上,针对该电机同时存在转矩脉动和悬浮力脉动过大的问题,提出了直接转矩(DT)与直接悬浮力控制(DSFC)策略。比较了传统方波控制策略与所提控制策略下系统的转矩脉动、悬浮力脉动以及转子径向位移波动。仿真结果表明:DT/DSFC不仅能提高系统动态响应速度,而且有效抑制了转矩和悬浮力脉动,削弱了转子径向抖振,验证了所提控制策略的有效性与优越性。  相似文献   

11.
陀螺仪是惯性导航系统的核心器件,首先对传统陀螺仪的发展历史进行了回顾,并介绍了各类陀螺仪的基本原理与优缺点。然后,从关注度、精度、成本、应用四个角度对传统陀螺仪目前的发展状况进行了总结与对比。最后,对未来陀螺仪的发展进行了展望,希望能对陀螺仪的研究有一定的参考意义。  相似文献   

12.
超流体陀螺仪的发展概况与研究进展   总被引:1,自引:0,他引:1  
超流体陀螺基于低温物理量子理论发展,有望成为新一代高精度陀螺仪的重要方向.通过对超流体陀螺的研究现状进行调研和分析,阐述了主要的几类超流体陀螺的原理和特点,分析了超流体陀螺的发展前景.对于基于交流(AC)约瑟夫森效应的超流体陀螺的灵敏度以及温度和体积上的优势展开了分析,并针对前期研究中的原理方案设计、加工和制冷技术以及误差分析等问题提出了思考并进行了展望,旨在加强国内研究者的交流,进一步促进新陀螺技术的发展.  相似文献   

13.
夏刚 《导航与控制》2020,(4):126-134
现代军事应用中,远程导弹武器主要功能是精确打击关键军事目标,制导精度成为其首要性能指标。当前,国内外远程武器采用的主流惯性器件为惯导平台系统,平台框架在发射前可控制台体旋转实现自对准、自标定等功能。在导弹飞行过程中,平台控制台体稳定于惯性空间,通过隔离角运动提高惯性仪表使用精度,因而成为远程制导系统的首选惯性器件。我国惯导平台系统技术从20世纪60年代起步至今,先后经历了滚珠轴承平台、气浮陀螺平台、动调陀螺平台、静压液浮平台以及三浮平台系统的发展历程。目前,在研新型远程导弹制导系统主要采用基于三浮陀螺及陀螺加速度计的三浮平台系统,其关键技术包括亚微米精度特种材料加工与装配技术、抗高过载环境高可靠三浮惯性仪表技术、惯性/天文复合制导技术以及惯导平台自对准与自标定技术。近年来,以光学陀螺、半球谐振陀螺等为代表的新型惯性仪表的工程应用精度逐步提升。以平台稳定控制技术为基础,构建基于新型固态陀螺的惯导平台体系架构,将会推动我国远程武器性能跨越式发展。通过分析光纤陀螺、半球谐振陀螺等新型惯性仪表的技术优势以及新一代制导系统小型化、数字化、智能化等性能需求,对我国远程制导用惯导平台技术发展提出了几点建议。  相似文献   

14.
光纤陀螺作为全固态惯性仪表,具有长寿命、高可靠和空间环境适应性好等显著优点,已广泛应用于国外各类宇航飞行器上。我国光纤陀螺的宇航应用起步于21世纪初,现已应用于导航卫星、通信卫星、遥感卫星、载人飞船、月球探测器等多种宇航飞行器上,对我国宇航飞行器性能的快速提升起到了重要的促进作用。主要介绍了国内外光纤陀螺宇航应用的情况,重点说明了目前几种主流光纤陀螺的技术方案,并对几种新型光纤陀螺(如光子晶体光纤陀螺)的宇航应用特点进行了分析。最后,从宇航应用的技术需求出发,指出了光纤陀螺宇航应用的几类关键技术和发展趋势。  相似文献   

15.
半球谐振陀螺研究现状与发展趋势   总被引:1,自引:0,他引:1       下载免费PDF全文
半球谐振陀螺是基于哥氏效应测量角速度的新型固态陀螺,具有结构简单、精度高、功耗低、寿命长、可靠性好、抗空间辐射等优点,是捷联惯性导航系统的理想陀螺仪,在宇航领域具有独特的应用优势。半球谐振陀螺的理论精度不受量子尺寸效应限制,是高精度、微型化陀螺的重要发展方向之一。首先介绍了半球谐振陀螺的基本工作原理,其次介绍了半球谐振陀螺的发展历程,综述了半球谐振陀螺的国内外研究现状,最后对半球谐振陀螺的发展趋势进行了展望。  相似文献   

16.
金属筒形谐振陀螺的频率修调技术研究   总被引:1,自引:0,他引:1  
旋转对称结构的谐振陀螺与传统的陀螺相比,具有高寿命、高稳定性、结构简单等诸多优点,然而该种陀螺在加工制造过程中产生的各种误差以及密度应力不均等缺陷,使得谐振子产生频率裂解,严重影响了陀螺性能。国内外对于频率裂解消除的技术已有一定研究,但缺乏系统化的算法指导修调过程。针对一种金属筒形谐振陀螺,推导了一套系统直观、便于指导修调过程的频率修调算法,并通过仿真验证了该算法的实用性。最后,搭建了一套基于电磁激励、声波检测的频率修调系统,按照修调算法进行了修调实验,成功将谐振子频率裂解修调至0.04Hz。  相似文献   

17.
嵌套环MEMS谐振陀螺是一种基于Coriolis效应的振动陀螺,具有结构全对称、加工鲁棒性好、电容灵敏度高、可采用传统体硅加工工艺实现批量化制造等优点,是目前最具性能潜力的微陀螺方案之一。首先阐述了嵌套环MEMS谐振陀螺的基本结构和工作原理,然后针对其在敏感结构设计及演化、品质因数提升、频率匹配技术、非线性效应与参数放大技术及零偏补偿技术等方面的发展进行了讨论,并对其在结构设计、加工技术、测控电路、新机理和新效应的应用等方面的发展进行了展望。嵌套环MEMS谐振陀螺可以实现高精度的角速率测量,具有巨大的性能潜力和较好的应用前景。  相似文献   

18.
高精度电磁标定力源是微推力测量系统的重要组成要素之一。为了获得性能优良的电磁标定力,本文综合采用数值模拟及实验测量两种方法分析研究了线圈和永磁铁相对位置变化时,磁铁几何尺寸对电磁力输出特性的影响:对于直径较大、厚度较小的永磁铁而言,其电磁力随相对位置的变化会存在极值,且极值点附近的电磁力具有较好的稳定性和一致性。根据电磁力变化趋势特性,提出了线圈和永磁铁相对基准中心(极值点)位置的高精度设置方案,且基准中心位置附近的电磁力变异系数可达0.00252,为高性能电磁力的获得提供了基础。最后,确定了大直径永磁铁+线圈组合型电磁力产生装置,并基于拟合方法建立了一定包络区间内的高精度电磁力控制关系式,其拟合曲线的估计标准误差约为0.0137,为微推力测量台架的标定提供了理论指导和技术支持。  相似文献   

19.
惯性技术广泛应用于海、陆、空、天各种载体的导航、定位与控制。通过对2022年的IEEE惯性传感器与系统会议、DGON惯性传感器系统会议、MEMS国际会议和圣彼得堡组合导航会议等惯性技术相关会议文献以及惯性技术领域相关机构披露的动态信息进行的详细梳理,总结了光学陀螺、微机电(MEMS)陀螺、半球谐振陀螺(HRG)、加速度计以及新兴的量子惯性传感器等惯性仪表及惯性导航系统(INS)的发展现状,并对惯性技术领域的发展趋势进行了分析与展望。当前,惯性技术领域相关研究主要侧重于小型化、提高精度和降低成本等方面。其中,光学陀螺较为成熟,更为侧重于小型化相关研究;微机电陀螺正在致力于向导航级性能突破和发展;半球谐振陀螺主要着力于探索降低高端产品的制造成本。  相似文献   

20.
Magnetic propulsion systems are based on the direct interaction of the vehicle's own magnetic field with the natural magnetic field, particularly the geomagnetic one, without using jet propulsion. Three such systems are reviewed in the order of their feasibility of automatic control over the thrust force vector. One of these magnetic propulsion systems permits partial control and is competitive with the electromagnetic or plasma rocket orbital microthrusters. The importance of the other two promising systems is to establish the main principles of magnetic propulsion. Their development depends on progress in solid-state physics. One of them may be able to have total control over the direction and modulus of the electrodynamic thrust force vector.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号