首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
在空间飞行环境中,航天器承受着各种环境的作用,而每种环境因素都在一定程度上影响着航天器的工作寿命。光子晶体光纤是一种新型光纤,其比传统保偏光纤更耐辐照,是长寿命光纤陀螺(Fiber Optical Gyroscope,FOG)的首选,可以满足长寿命卫星的应用需要。将光纤陀螺特征寿命定义为强度,将热、辐照和振动等环境因素定义为应力,运用应力强度分析理论,采用最坏情况分析方法,分析了在常见应力联合作用下光纤陀螺的薄弱环节,评估了光纤陀螺的在轨工作寿命,验证了光子晶体光纤陀螺在某长寿命通信卫星上的适应性。分析结果表明,热和辐照是影响光子晶体光纤陀螺的重要因素。研究结论可用于有针对性地进行改进设计,为长寿命高可靠卫星提供技术支撑,具有显著意义。  相似文献   

2.
光子晶体光纤技术发展迅速,凭借其自身材料的突出优势已经在干涉式光纤陀螺中得到了应用。从光子晶体光纤的原理出发,阐述了光子晶体光纤的国内外研究现状和应用于光纤陀螺的潜在优势。同时针对两型光子晶体光纤陀螺:干涉式光子晶体光纤陀螺和谐振式光子晶体光纤陀螺,综述了陀螺层级的国内外研究现状及目前面临的主要技术问题,最后提出了光子晶体光纤陀螺后续发展需要攻克的技术瓶颈。  相似文献   

3.
工作在宇航环境中的光纤陀螺组件会受到复杂的应力作用,而陀螺组件本身结构复杂,价格昂贵,并且可靠性高,很难通过普通的加速寿命试验评估其寿命.运用包含剩余标准化系数的退化轨迹模型,描述了光纤陀螺组件退化量与应力水平的关系,并且运用双应力步进加速退化实验的方法,得到光纤陀螺组件在温度和辐照两种应力下的退化数据.结合光纤陀螺加速寿命模型,评估该陀螺组件在宇航环境下的寿命.  相似文献   

4.
我国光纤陀螺技术通过多年的研究与发展日趋成熟。为了满足不同应用领域的需求,光纤陀螺组合向小型化、低成本、高精度方向发展。该文主要介绍了光纤陀螺捷联小型化技术,包括光纤陀螺三轴一体化技术和DSP信号处理模块小型化技术,前者又包括陀螺表头和陀螺信号处理电路的小型化技术。这些技术已经用于具体型号任务。和传统光纤陀螺捷联相比,小型化光纤陀螺捷联有较高的工程应用价值。  相似文献   

5.
激光器驱动干涉型光纤陀螺的优点是潜在精度高、标度因数稳定性好等,在飞机、舰船惯性导航以及其他高性能领域具有广泛的应用前景。当然,干涉型光纤陀螺采用高相干光源面临诸多技术挑战,如相干瑞利散射、Kerr效应、偏振交叉耦合、Faraday效应等引起的漂移和噪声。采用宽线宽激光器可以抑制这些误差。针对激光器驱动干涉型光纤陀螺中加宽激光器线宽、降低激光器相干性的几种相位调制技术以及线宽加宽抑制噪声的效果进行了理论分析和评估。  相似文献   

6.
研究了光纤陀螺和星敏感器的数学建模和定姿算法。在保证空间飞行器姿态确定高精度的前提下,通过扩展Kalman滤波器,将陀螺仪和星敏感器所测得的飞行器姿态参数进行数据融合和估计,并对陀螺仪进行实时补偿,姿态角估计误差幅度在以内,稳态时姿态角估计误差小于,验证了算法的正确性和有效性。结果表明,采用光纤陀螺-星敏感器联合定姿方式可以准确预测空间飞行器的姿态信息,对工程应用具有一定的指导价值。  相似文献   

7.
介绍了光纤陀螺的原理及种类,通过将光纤陀螺与其它陀螺进行比较,总结出了光纤陀螺的优点.最后,综述了光纤陀螺在武器装备上的应用,并对光纤陀螺的应用前景作了预测.  相似文献   

8.
针对光纤陀螺惯导精度和动态性能相互矛盾的问题,从实际应用需求出发,提出了一种高精度和大量程的双通道光纤陀螺捷联惯导系统.介绍了设计的基本原理和系统组成,并详细阐述了大小光纤陀螺设计、双通道加速度计设计和软件算法设计等关键技术,最后研制了一套原理样机.通过系统级标定试验、量程和陀螺精度试验、高动态振动环境试验和动态跑车试验等对样机进行验证,结果表明该技术方案具有可行性,为其他光纤陀螺惯导系统提供了新的设计思路.  相似文献   

9.
综述了空间飞行器的精密定轨对世界时测量的需求,并对现有大型激光陀螺、光纤陀螺测量世界时的现状与前景进行了分析,阐述了大型高精度光纤陀螺用于世界时测量需重点解决的关键技术,对实现的大型高精度光纤陀螺样机进行了试验验证,零偏不稳定性达到了5.2×10-6(°)/h(1σ),同时对陀螺长期运行期间探测到的青海玛多地震情况进行了分析,最后对面向更高精度的世界时测量用大型光纤陀螺发展方向进行了展望.  相似文献   

10.
介绍了基于联合仿真的光纤陀螺(FOG)代码验证技术,并把该技术应用于光纤陀螺(FOG)闭环反馈模块的验证中。应用Questasim与Matlab/Simulink软件的各自优点,进行联合仿真,可以提高设计效率,降低研究成本。  相似文献   

11.
Fiber optic gyroscopes (FOG) are solid-state rotation sensors that are appropriate for a wide variety of applications. In addition to becoming competitive with ring laser gyroscopes on new programs, FOGs are being manufactured to replace spinning wheel gyro technology in existing programs. The FOG brings with it the advantages of long life, high reliability, input axis stability, and low acceleration sensitivity. The AlliedSignal pointing grade fiber gyroscope was designed to replace a high-performance mechanical gyroscope currently made by AlliedSignal. Detailed passive thermal design, gyro assembly techniques, methods for rejecting light source intensity noise, and light source wavelength control are critical features that have been developed to produce a FOG with low noise, stable bias, and a stable and linear scale factor. Results of performance tests and error models indicate that these gyros have a capability for random walk of 0.0002 degrees/≠ hour and bias stability of 0.001 degrees/hour  相似文献   

12.
The application of microelectromechanical systems (MEMS) to space flight is reviewed. The applications include use as microthrusters on mini-size and smaller satellites, in missile defense systems, and as propulsion systems for miniature unmanned aerial vehicles.  相似文献   

13.
Fibrous composites have found applications in aircraft from the first flight of the Wright Brothers’ Flyer 1, in North Carolina on December 17, 1903, to the plethora of uses now enjoyed by them on both military and civil aircrafts, in addition to more exotic applications on unmanned aerial vehicles (UAVs), space launchers and satellites. Their growing use has risen from their high specific strength and stiffness, when compared to the more conventional materials, and the ability to shape and tailor their structure to produce more aerodynamically efficient structural configurations. In this paper, a review of recent advances using composites in modern aircraft construction is presented and it is argued that fibre reinforced polymers, especially carbon fibre reinforced plastics (CFRP) can and will in the future contribute more than 50% of the structural mass of an aircraft. However, affordability is the key to survival in aerospace manufacturing, whether civil or military, and therefore effort should be devoted to analysis and computational simulation of the manufacturing and assembly process as well as the simulation of the performance of the structure, since they are intimately connected.  相似文献   

14.
The Indian Space Program is described. The main objectives of the program are to provide operation space services to the nation, especially in the fields of communications and remote sensing, and to use modern space technology for the benefit of the Indian people. Some applications of the Indian Space Program are remote sensing, imagery, communications, broadcasting, and surveys of natural resources for water, crop, forest, land, minerals, and ocean. The emphasis is on the development and operation of indigenous satellites and launch vehicles for providing these space services  相似文献   

15.
《中国航空学报》2023,36(6):279-287
Aimed at improving the bias stability of Fiber-Optic Gyroscope (FOG)-based inertial navigation systems in environments of various ambient temperatures, a novel temperature-compensation method based on a correlation analysis of the same batch of FOGs is proposed. The empirical mode decomposition method was employed to filter the high-frequency noises of the FOGs. Then, the correlation information of the multiple FOGs was used to analyze the feasibility of the method. Eventually, the same residual error of the FOGs was compensated via the simple piecewise linear models. The experimental results indicate that excellent compensation effects for both high- and low-accuracy FOGs are achieved using the proposed method. Specifically, the accuracies of high-accuracy FOGs are improved by approximately 33.9%, 20%, and 31.2%, while those of low-accuracy FOGs are improved by approximately 39.1%, 20.8%, and 26.1%. The method exhibits the merits of simplicity, validity, and stability, and thus is expected to be widely used in engineering applications.  相似文献   

16.
针对光纤陀螺车载捷联惯导系统在晃动基座下传感器测量噪声增大,导致对准精度降低、对准时间长的问题,本文对小波滤波方法在光纤陀螺捷联惯导系统初始对准中的预滤波处理进行了研究,确定了合适的小波尺度分解级数及小波基,并进行实验验证。实验结果表明:此方法有效降低了光纤陀螺的测量噪声,提高了航向角的对准精度并缩短对准时间,在工程上具有一定的参考价值。  相似文献   

17.
外界温度场作用下,光纤环温度变化和热应力是引起光纤陀螺非互易误差的主要原因。分析了光纤陀螺热致漂移的数学模型,基于该模型仿真研究了对光纤环以恒定功率加热随后转入平稳状态扰动因素下陀螺的输出特性。为验证模型准确性,选用3个光纤环搭建光纤陀螺系统,并对陀螺零偏变化特性进行了测试。测试结果表明,各陀螺零偏测试值与模型计算值间的误差不超过8%,实验结果与模型能够较好符合,该研究结果对高精度光纤陀螺的设计具有重要指导意义。  相似文献   

18.
With a growing demand for space communications and resulting overcrowding of geostationary orbit (GEO), the importance of high altitude inclined elliptic orbits is gaining impetus. However, the satellites in these orbits suffer from a severe problem of apparent periodic angular drift around their line-of-sight. This paper addresses this problem and proposes a cost effective method based on tether to continually tilt the satellites in order to compensate for longitudinal and lateral drifts relative to the ground station. The proposed system comprises two satellites connected by a flexible tether at a point on each satellite with offsets. A control strategy is developed for tether offset variations that ensures judiciously controlled changes in the satellite orientations. The numerical simulation of the governing nonlinear equations of motion establishes the feasibility of the concept. A high degree of line-of-sight pointing of dual satellites as well as the simplicity of the proposed control mechanism makes the concept particularly attractive for future space applications.  相似文献   

19.
The ZDPS-1A pico-satellites are the first satellites in China within the 1-10 kg mass range that are successfully operated on orbit. Unlike common pico-satellites, they are designed to be "larger but stronger" with more powerful platforms and unique payloads so as to bear a better promise for real applications. Through their space flight mission, the functionality and performance of the two flight models are tested on orbit and validated to be mostly normal and in consistency with design and ground tests with only several inconforming occasions. Moreover, they have worked properly on orbit for one year so far, well exceeding their life expectancy of three months. Therefore, the space flight mission has reached all its goals, and verified that the design concept and the engineering process of the picosatellites are sufficient in allowing them the desired functionality and performance in, and the adaption to the launch procedure and the low-Earth orbit space environment. In the foreseeable future, the platform together with the design concept and the engineering process of the pico-satellites are expected to be applied to more complicated real space applications.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号