首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 149 毫秒
1.
基于缺陷概率特点的粉末冶金材料寿命预测概率模型   总被引:5,自引:3,他引:2  
粉末冶金材料由于其制造工艺的特点,强度和寿命对微缺陷(夹杂、气孔、表面划伤)十分敏感,导致了粉末冶金材料的破坏具有较大的分散性,使得寿命预测更为困难。本文根据国内粉末材料中缺陷的分布特点,基于文献[79]中概率断裂分析的思路,对原有方法进行了修正和推广,重新给出了缺陷在表面、亚表面以及内部时的定义及缺陷在这些不同位置时出现概率断裂的确定方法,建立了一个可考虑缺陷形状、大小、位置等分布特征的粉末冶金材料寿命预测概率模型,并基于此计算了不同尺寸缺陷位于不同位置时材料的失效概率及总失效概率。分析表明:所给出的方法可以很好的表征国内工艺条件下粉末冶金材料缺陷的概率特征对强度寿命的影响,方法是有效的。   相似文献   

2.
疲劳寿命受到材料内部缺陷的制约,可以通过电位法试验获得微缺口试样的疲劳裂纹扩展规律,进而分析缺陷对材料疲劳寿命的影响。在试验前,需要预先研究试验的主要影响因素。利用COMSOL有限元软件,研究了电流输入点位置和电势差测点位置对试验精度和试验复现性的影响,计算得到不同裂纹前缘形状对应的电位法校核曲线。结果表明:(1)电流输入点位置位于试样平行于裂纹面的上下表面时,可以保证试验的复现性。(2)当测点位于裂纹面的垂直对称面上,且测点距离裂纹面垂直距离为0.06~0.1倍试样宽度时,可以同时满足测试精度和复现性。(3)当裂纹宽度和裂纹深度的比值3时,可以不考虑裂纹前缘形状对校核曲线的影响,当裂纹宽度和裂纹深度的比值≤3时,裂纹前缘形状对校核曲线的影响较大。  相似文献   

3.
建立了高体积分数SiCP/Al复合材料的微缺陷有限元模型,对其拉伸力学特性进行了模拟计算.通过对含孔洞、界面脱粘等典型微缺陷的模拟,发现孔洞的存在对材料性能影响不大;界面脱粘对材料承载性能影响最大,脱粘界面面积的大小与复合材料承载能力成反比.微缺陷之间的相对位置对材料拉伸性能的影响不同,靠近孔洞处界面脱粘比背离孔洞处界面脱粘使材料承载性能下降更大.进一步多颗粒模型的模拟分析,发现高体积分数SiCP/Al复合材料的非线性拉伸曲线与其内部颗粒界面逐步脱粘存在有一定的关系.在开始加载阶段脱粘比例递增较快,在接近破坏时脱粘比例递增减慢.  相似文献   

4.
微爆索切割航空有机玻璃的研究   总被引:1,自引:0,他引:1  
为了改善现有的航空弹射救生系统,提出了微爆索线性切割技术在弹射救生系统中的应用。设计了一系列微型爆破索,通过微爆索切割航空有机玻璃的实验研究,观测了有机玻璃层裂现象,得到了不同参数对有机玻璃破坏深度和破坏影响区的影响,确定了微爆索应采用的外壳材料、炸药类型、装药量的范围等参数。运用大型非线性有限元程序LS-DYNA3D对微爆索切割航空有机玻璃进行了数值模拟分析,得到了与实验结果吻合的计算结果,得到微爆索装药量与有机玻璃破坏深度的关系,为合理设计航空救生系统提供了有力依据。  相似文献   

5.
本文介绍了铝-6%镁合金超塑性研究的情况。通过对工业铝合金LF6进行材料细化处理,使其具有超塑性,并研究了对超塑变形有影响的各种因素,经测试获得了与超塑性有关的各种参数。另外对该材料变形过程中的微观结构如晶粒度、位错、空洞、晶界滑移及其变化规律也进行了初步研究。在成形方面制作了四种不同形状的零件,质量均很理想。  相似文献   

6.
为研究加载方式对裂纹萌生-扩展的影响机理,推导出米赛斯屈服准则与屈雷斯加屈服准则统一的载荷谱。基于该载荷谱利用内聚单元模型对5052铝合金内部椭圆形脆性相微观视场进行微裂纹萌生扩展研究。利用应力状态参数对不同加载方式下微裂纹的起裂方式和起裂位置进行了分析,结果表明:韧性材料的微裂纹起始于基体内脆性相,宏观基体材料与微观脆性相之间应力状态的不协调是致使裂纹萌生的主要原因。刚度弱化系数预示了微裂纹的起始位置,应力状态参数综合表征了裂纹的类型和起裂方式。在相同形变量时,裂纹萌生难易程度存在差异:双向压缩不易诱发微裂纹而纯剪切较易诱发微裂纹。研究结论与试验结果吻合较好。  相似文献   

7.
岳珠峰  张克实  郑长卿 《航空学报》1992,13(11):698-701
 用弹塑性大变形有限元方法对含微空洞的40 Cr材料制轴对称拉伸试件进行了模拟计算与分析,表明空穴沿轴向和径向长大规律的不同,主要表现在对应力三维度水平的依赖程度不一样;在所考察的范围内,空穴横纵扩张比与应力三维度成线性关系。该计算模型在一定程度上反映了真实试件中的空穴变形情况,简单推算表明它在一定程度上也能反映裂纹体裂端空穴长大规律,并有可能用于估计材料的韧脆转变的研究。  相似文献   

8.
本文研究了40SiMnCrNiMoV 钢在撞击载荷作用下,撞击应力波引起的动态断裂特征。应用 HHS—2X 扫描电镜观察到,撞击应力波造成材料破坏的微裂纹成核胚芽是三角形、箭矢形、楔形、正方形和长方形等规则形状孔洞,还观察到这些孔洞按照应力波在材料内部反射、干涉、叠加后按一定波形的排列形式以及这些孔洞扩展成裂纹的形状。本研究提供了撞击应力波在材料中如何反射、干涉和叠加的实际过程和真实图像,初步把撞击应力波造成的微观破坏形式和位错理论建立了联系,从而把一定波长的应力波产生的断裂主应力和位错运动产生的微观裂纹成核胚芽所消耗的能量联系起来,这就为用位错来描述金属材料的本构关系提供了一定的实验依据。  相似文献   

9.
制造误差对气体静压圆柱轴承静态特性的FEM分析   总被引:1,自引:0,他引:1  
吴起  池长青  王之珊 《航空学报》1997,18(6):703-708
在考虑轴承的制造误差情况下,采用Galerkin有限元方法(FEM)对小孔节流型气体静压圆柱轴承的静态特性,即承载能力和刚度,进行了理论计算和分析。所考虑的制造误差为典型的几何形状误差和位置误差。计算结果表明,几何形状误差和位置误差对该种轴承的静态特性有着不同程度的影响。  相似文献   

10.
通过对高速变形的黄铜进行细观分析,探讨了动载下黄铜的变形和破坏机理;进一步阐述载下材料变形及断裂过程是由其内部的微孔洞和微裂纹的演化而造成的,这一过程分为形核,长大及微孔洞聚合。  相似文献   

11.
复合材料气囊成型工艺的质量缺陷研究   总被引:1,自引:0,他引:1       下载免费PDF全文
重点论述了气囊成型较大尺寸的复合材料制件时容易产生孔隙或气泡等工艺质量缺陷的原因,指出气囊的柔性不利于树脂的流动和气泡的排出.试验结果表明,尽可能地排出预浸料吸收的水分、低沸点溶剂及预浸料铺叠过程中夹裹的气体,进而减少固化时气泡的成核与长大,是解决气泡和孔隙等工艺质量缺陷的关键.  相似文献   

12.
段玉岗  闫晓丰  李超  张小辉 《航空学报》2014,35(4):1173-1180
近年来纤维铺放(AFP)技术被广泛用于大型复杂飞机复合材料构件成型。为了保证纤维铺放过程的一致性,纤维铺放压辊必须在适应芯模型面的同时具有较好的压紧力分布均匀性。鉴于此,对不同弹性模量的压辊材料进行了试验分析,薄膜压力传感器及超声显微镜测试结果表明,低弹性模量的压辊材料变形较大,较好地适应了芯模表面,压力分布相对均匀且可以减少铺层的层间孔隙数量,硅橡胶压辊比聚乙烯压辊压紧力分布均匀性提高了50%~60%,铺层孔隙率降低了92.1%。针对孔隙分布主要集中在压辊两端及压紧力在压辊两端下降幅度较大的问题,采用ANSYS Workbench对压辊端部进行斜端面优化,得到最优倾斜角度为20°;测试结果表明斜端面压辊压力分布均匀性比直断面压辊提高了42.9%,铺层孔隙率下降了51.6%。  相似文献   

13.
本文针对CMSX-4单晶材料,在细观层次上对筏化-解筏以及空穴这两种主要损伤机理进行了细观试验研究。结果表明.空穴在蠕变、疲劳和热机械疲劳损伤中起着重大的作用;蠕变过程中的筏化规律影响材料的蠕变寿命,但细观层次的筏化,影响因素较为复杂。本文的研究结果对准确评定镍基单晶涡轮叶片的剩余寿命具有参考作用。  相似文献   

14.
固体推进剂空穴损伤的理论与实验分析   总被引:1,自引:0,他引:1       下载免费PDF全文
在空穴累积损伤和微孔洞形核、长大和汇合损伤二种损伤模式分析的基础上,提出一个空实损伤细观力学模型,根据粘弹性对应原理和数学分析,求得空穴损伤演变的二个理论数学表达式。要用空穴损伤非接触诊断专利技术,进行老化药柱的空穴损伤实验研究,求得一种固体复合推进剂的空穴损伤演变的实验曲线和使用寿命。因为贮存失效临界点是实测的,对比实验分析表明:若药柱贮存时间超过贮存失效临界点,则药柱要出出裂纹,超过的时间越长则药柱中的裂纹就越大。  相似文献   

15.
聚合物基复合材料中孔隙率及层间剪切性能的实验表征   总被引:2,自引:0,他引:2  
在不同固化压力条件下制作孔隙含量不同的层合板.将层合板进行超声C扫描以识别孔隙率分布不同的区域,然后再将孔隙率分布相对均匀的区域进行超声波二次穿透反射法检测以精确测量孔隙的含量,并取试样测量孔隙的体积含量和测试层间剪切性能(ILSS).结果表明,在孔隙率低于4%时,孔隙率与层间剪切性能基本成线性关系,并且孔隙率每增加1%,层间剪切性能约下降8%.从而建立起层合板中孔隙率与层间剪切性能的定量表征关系.  相似文献   

16.
刘江南  田长生 《航空学报》1989,10(7):404-408
 借助扫描电镜、透射电镜对试样的断口及剖面进行了金相观察,分析研究了第二相对GH33A合金在700℃下的晶界损伤方式及疲劳和蠕变交互作用的影响。  相似文献   

17.
针对2024-T62铝合金薄板系统地开展了腐蚀预损伤对材料疲劳S-N曲线、小裂纹萌生行为、长短疲劳裂纹扩展及物理小裂纹门槛值扩展行为的影响等试验研究.结果表明:腐蚀预损伤对材料疲劳S-N曲线及材料疲劳小裂纹萌生行为有明显的影响,但时材料长短裂纹扩展及物理小裂纹门槛值扩展行为没有明显的影响.通过假定腐蚀预损伤为初始小裂纹...  相似文献   

18.
In this work, a macroscopic non-linear constitutive model accounting for damage, inelastic strain and unilateral behavior is proposed for the 2D plain-woven C/Si C composite. A set of scalar damage variables and a new thermodynamic potential expression are introduced in the framework of continuum damage mechanics. In the deduced constitutive equations, the material's progressive damage deactivation behavior during the compression loading is described by a continuous function, and different deactivation rates under uniaxial and biaxial compression loadings are also considered. In damage evolution laws, the coupling effect among the damage modes and impediment effect of compression stress on the development of shear damage in different plane stress states are taken into account. Besides, the general plasticity theory is applied to describing the evolution of inelastic strain in tension and/or shear stress state. The Tsai–Wu failure criterion is adopted for strength analysis. Additionally, the material model is implemented as a user-defined material subroutine(UMAT) and linked to the ABAQUS finite element software, and its performance is demonstrated through several numerical examples.  相似文献   

19.
机织复合材料在服役过程中不可避免地遭受低速冲击而引起内部损伤,导致材料性能减退。本文以斜纹机织热塑性复合材料为研究对象,通过实验与模拟相结合的方法研究其在低速冲击下的损伤行为。构建了微观、介观和宏观串行的多尺度模型对斜纹机织热塑性复合材料低速冲击损伤行为进行预测,并在5和10 J的冲击能量下,对其进行低速冲击试验以验证该多尺度模型的正确性。结果表明,微观、介观和宏观串行的多尺度模型能够准确地预测出斜纹机织热塑性复合材料的冲击损伤特性;在较大的冲击能量下,材料正面和背面均出现了损伤,且损伤以纤维断裂为主;低速冲击数值模拟所预测的力响应曲线与试验结果表现出良好的一致性,数值模拟损伤面积的误差在10%以内。  相似文献   

20.
提出了在非对称循环加载下描述材料弹塑性材料行为的损伤演变速率方程式与各个历程与不同损伤量DCi相对应的寿命NCi估算式。其方法是采用以塑性应变幅同弹性应变幅之比值ΔEp/Δεe作为应力应变参量,以常用的材料常数作为材料参数。而且,还提出了与常用材料常数、平均应力与平均应变、加载临界历程长短有着函数关系的综合性材料常数的新概念。此外,以汽车的某一零件为例,计算了它的疲劳损伤。其计算结果与Landgraf方程式计算结果一致,且计算精度较高。这对避免过多而重复的疲劳试验,对方便工程应用,对节约人力、时间和资金有着实际意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号