首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对某机载Ka频段卫星通信天线的使用环境,论述其天线角跟踪系统在捷联航姿设备引导下,天线主波束指向卫星目标位置的概率,分析影响天线角跟踪系统引导概率的主要因素,通过消减系统中大误差源保证了天线引导概率,通过扩展主波束指向空域提高了目标落入概率。计算数据和试验验证表明,给出的分析方法可行,设计策略有效。  相似文献   

2.
利用空间阵列方向图合成中的数字综合算法 ,提出了一种新的MTD滤波器设计方法。该方法通过在滤波器频率响应的副瓣区放置大量的干扰信号 ,改变干扰信号的功率强度 ,从而自适应地控制滤波器频率响应的副瓣电平。这种方法所设计的MTD滤波器 ,其频率响应不仅在零频附近有宽而深的零陷 ,而且在其他副瓣区域可以为任意形状 ,具有较好的实用性。设计实例证实了这种方法的有效性。  相似文献   

3.
The transient sidelobe level of a sidelobe canceler (SLC) is a function of the external noise environment, the number of adaptive auxiliary antennas, the adaptive algorithm used, auxiliary antenna gain margins, and the number of samples used to calculate the adaptive weights. An analytical result for the adaptive sidelobe level is formulated for the case when the adaptive algorithm is the open-loop, sampled matrix inversion (SMI) algorithm. The result is independent of whether concurrent or nonconcurrent data processing is used in the SMI algorithm's implementation. It is shown that the transient sidelobe level is eigenvalue dependent and increases proportionally to the gain margin of the auxiliary antenna elements with respect to the quiescent main antenna sidelobe level. Techniques that reduce this transient sidelobe level are discussed, and it is theoretically shown that injection independent noise into the auxiliary channels significantly reduces the transient sidelobe level. It is demonstrated that using this same technique reduces the SMI noise power residue settling time  相似文献   

4.
We discuss strategies for designing: active phased array antennas with high reliability. We show how to consider fault-tolerance in the design of the antenna architecture, so that replacement of failed components can be avoided for an extended period of time. First, we address the dependence of antenna life cycle cost on component failure rates. Then we discuss the design of active phased array architecture for maximizing antenna mean-time-between-failures (MTBF). The antenna MTBF is defined in terms of a specified degradation in peak sidelobe level. We present simulated data showing the effect of random, single, and clustered element failures on the peak sidelobe level of a low sidelobe antenna aperture. We use these data as a basis for analyzing various phased array architectures in terms of their antenna MTBF  相似文献   

5.
Signal or target detection is sometimes complicated by the presence of strong interference. When this interference occurs mainly in the sidelobes of the antenna pattern, a solution to this problem is realized through a sidelobe canceler (SLC) implementation. Since the false-alarm probability is a system parameter of special importance in radar, an interference-canceling technique for radar application should maintain the false-alarm probability constant over a wide range of incident interference power. With the requirements of sidelobe interference cancellation and constant false alarm rate (CFAR), a new algorithm for radar detection in the presence of sidelobe interference is developed from the generalized likelihood ratio test of Neyman-Pearson. In this development, the received interference is modeled as a nonstationary but slowly varying Gaussian random process. Cancellation of the sidelobe interference is based upon a `synchronous' estimate of the spatial covariance of the interference for the range gate being tested. This algorithm provides a fixed false-alarm rate and a fixed threshold which depend only upon the parameters of the algorithm  相似文献   

6.
The performance of planar phase-array antennas with mechanical errors is investigated. Errors in array element positions as a result of structural distortions are considered as deterministic and predictable. Detailed calculations for two assumed modes of distortion reveal that their effects on antenna performance are the loss of peak response in the scan direction and the broadening of the mainlobe, while the far-out sidelobe structure remains relatively intact. For large antennas, performance improvement can be expected by suitable phase compensation. Performance of antennas with random errors in their element positions must be treated statistically. Expressions of average directivity and sidelobe level corresponding to arbitrary error magnitudes in element position, amplitude and phase of excitation as well as finite rate of failure of element modules were derived and verified by direct numerical calculations from the antenna directivity patterns. For a planar phased-array antenna typical for space-based radars, the standard deviation of element position errors must not exceed 1% of the operating wavelength in order to maintain a -10 dBi sidelobe level  相似文献   

7.
The sidelobe suppression and improved sidelobe suppression mode performance of terminal and enroute air traffic control radar beacon systems using the existing antenna and a typical improved antenna in the presence of perfectly dielectric flat ground are investigated theoretically. Necessary analytical expressions for various quantities characterizing the system performance have been derived. A general purpose computer program has been developed for the computation and tabulation of these quantities as functions of the elevation angle of the observation point and for different combinations of heights of the directional and omnidirectional antennas of the beacon. Although the discussions given here apply to some specific antenna configurations, the theoretical method developed has more general application in evaluating quantitatively the performance of the beacon system in a given situation.  相似文献   

8.
The performance of electronically scanned radar systems is evaluated for clear and barrage jamming environments. Radar figures of merit in jamming are derived for search and track modes and are directly related to antenna pattern relative sidelobe levels. A random sidelobe model is analyzed with various numbers of independent jammers. Probability distributions of detection probability are derived to determine detection performance versus average jamming level and number of jammers.  相似文献   

9.
Sidelobe blanking systems are useful in preventing acquisition of strong targets in the antenna sidelobes and also in rejecting pulsed interference originating in the sidelobes. The analysis of a common two-channel system is presented in which the relationship between the probability of main-lobe detection and the probability of sidelobe detection are given in terms of false-alarm probability, signal-to-noise ratio, and the ratio of sidelobe levels of the two channels. The numerical results given provide a basis for the selection of the sidelobe blanking channel antenna gain and threshold levels.  相似文献   

10.
In angle tracking antenna applications, the angle sensing boresight accuracy capabilities are important. The ability of an antenna to precisely determine the bearing angle to a point source is determined by the slope of the control function pattern at boresight. In the presence of extraneous interference, the magnitudes of the sidelobe and backlobe responses are important. Control pattern slope (angular sensitivity) is primarily a function of aperture illumination. It can be described by a current distribution in intensity and phase at every point. Once distribution is defined, lobe structure is defined by the associated transform. When more than one feed is used, the distribution will be a vector sum of the individual feed distributions. The resulting secondary pattern can be defined in terms of the amplitude distribution and the phase center locations of the contributing feeds. With a four-horn monopulse configuration, the feed phase centers are displaced from the boresight axis. Placing the phase centers on the boresight axis by rotating the feeds through 45 degrees results in a different set of intensity and phase values. A quite different secondary pattern results. The control function obtained by the subtraction of the powers from a paired set of on-axis feeds results in a lower sidelobe level than that obtained with a conventional monopulse combiner for a given feed taper.  相似文献   

11.
RFI suppression for ultra wideband radar   总被引:1,自引:0,他引:1  
An estimate-and-subtract algorithm is presented for the real-time digital suppression of radio frequency interference (RFI) in ultrawideband (UWB) synthetic aperture radar (SAR) systems used for foliage- and ground-penetrating imaging. The algorithm separately processes fixed- and variable-frequency interferers. Excision of estimated targets greatly reduces bias in RFI estimates, thereby reducing target energy loss and sidelobe levels in SAR imagery. Performance is demonstrated on data collected with the Army Research Laboratory's UWB rail SAR.  相似文献   

12.
In radar systems, sidelobe blanking (SLB) is used to mitigate impulsive interference that enters the radar through sidelobes of the main antenna. SLB employs an auxiliary antenna channel with the output being compared with that of the main antenna channel and a decision is then made as to whether or not to blank the main channel output. SLB performance determination involves the evaluation of several probability functions. Based on the classical Maisel SLB architecture, this work extends previous performance results, in which detection was limited to the case of a single radar pulse with either Marcum or Swerling I target fluctuation. Probability expressions have been generalized to include both an arbitrary number of integrated pulses and target fluctuation models based on the gamma distribution. The Swerling fluctuation models are all special cases of the gamma distribution. Results are derived in terms of two generalized probability functions, one for detection and the other for blanking. With these generalized probability functions, the SLB design and performance results can be determined. Examples are presented and discussed.  相似文献   

13.
Performance analysis of conformal conical arrays for airborne vehicles   总被引:2,自引:0,他引:2  
Conformal array apertures have great potential for providing high performance, low weight systems with little or no impact to the aerodynamic design of the air vehicle. A performance analysis of conformal conical arrays for a national airborne radar application is presented. The conical array geometry is chosen for its similarity to an aircraft or missile nosecone. Performance capabilities are analyzed for a number of antenna performance parameters including scan volume, sidelobe levels, grating lobes, beamwidth, directivity, element count, and cross-polarization  相似文献   

14.
A conjecture is made that a tapped delay line adaptive array of K elements can be used to suppress more than K - 1 noncoincidentcenter frequency interferers when the interferers operate within afraction of the signal bandwidth. This is possible because of theavailability in the increased number of degrees of freedom. Asimulation study is made verifying this conjecture for the case of atwo-element array and two interferers. Three and five tap sectionsare used in the simulation. The study indicates that the performanceimproves with increasing number of taps.  相似文献   

15.
阐述了相控阵天线仿真的重要性,指出了相控阵天线仿真的主要困难。提出了一种利用阵因子、方向性因子和旁瓣抑制因子分别解决仿真波束形状、天线增益、方向图旁瓣及其变化等3大问题,并进行综合建模和仿真,给出了综合后的仿真模型。该仿真模型保证了理论方面的精度,优化和减少了仿真计算步骤和计算量。利用该仿真模型,给出了宙斯盾系统的AN/SPY-1D雷达天线的仿真计算实例。  相似文献   

16.
It is shown that synthetic-aperture radar (SAR) motion can be compensated by using an antenna-mounted strapdown inertial measurement unit (IMU) as the motion sensing system, but sensor and system errors affect SAR image quality. A strapdown IMU consists of three accelerator channels and three gyro channels. Strapdown IMU errors include gyro-scale and accelerometer-scale factor and bias errors, velocity error, platform tilt, and errors induced by limited inertial sensor bandwidth. The effects of these errors on the SAR image quality are presented in terms of the SAR impulse response. IMU errors that cause low-frequency phase errors (less than one cycle per array time) are categorized in terms of quadratic and cubic phase errors. IMU errors that cause high-frequency phase errors (greater than one cycle per array time) are categorized in terms of the integrated sidelobe ratio and peak sidelobe ratio. A motion compensation system conceptualization is described wherein a strapdown IMU is attached to an antenna and transfer-aligns to the aircraft's master navigator  相似文献   

17.
Nonlinear apodization for sidelobe control in SAR imagery   总被引:2,自引:0,他引:2  
Synthetic aperture radar (SAR) imagery often requires sidelobe control, or apodization, via weighting of the frequency domain aperture. This is of particular importance when imaging scenes containing objects such as ships or buildings having very large radar cross sections. Sidelobe improvement using spectral weighting is invariably at the expense of mainlobe resolution presented here is a class of nonlinear operators which significantly reduce sidelobe levels without degrading mainlobe resolution implementation is via sequential nonlinear operations applied to complex-valued (undetected) SAR imagery. SAR imaging is used to motivate the concepts developed in this work. However, these nonlinear apodization techniques have potentially broad and far-ranging applications in antenna design, sonar, digital filtering etc., i.e., whenever data can be represented as the Fourier transform of a finite-aperture signal  相似文献   

18.
The sidelobe suppression function in the secondary surveillance radar system is analyzed when separate main and control antenna are used. Their vertical lobing structures are not matched with each other, so a differential lobing pattern comes out whose maxima and minima are enveloped by smooth curves depending on vertical displacement of phase centers and horizon cutoff rates. The developed analysis provides a method for the evaluation of the system performance for any antenna configuration and for the determination of design guidelines.  相似文献   

19.
The authors suggest a new algorithm for binary coding waveform sidelobe reduction after matched filtering and present a general method by which optimized sidelobe suppression filters for Barker codes can be obtained with a peak output sidelobe 2.62 dB lower than the results found in the literature (for 13-b Barker code). This optimization algorithm is also promising for other binary coding waveforms, such as truncated pseudonoise (PN) sequences and concatenated codes. This new approach can readily be applied to sidelobe-reduction filter design for other binary coding waveforms, such as truncated PN sequences, concatenated codes, etc., which often find their applications in radar systems and spread spectrum communication systems  相似文献   

20.
This paper deals with the performance of pulse Doppler radar in the presence of random fading. The behavior of this radar is studied as a statistical problem to bring out the limiting bounds of the ambiguity diagram and the nature of variance with respect to the Doppler frequency. The performance of the radar insofar as the first sidelobe is concerned, is shown to be better in the presence of fading than in the normal case. In a particular case where 75 pulses out of an aggregate of 250 pulses are missing, the first sidelobe level is 20.0 dB down from the main lobe with a probability of 23 percent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号