首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Performance results for the sidelobe level of a compressed pulse that has been preprocessed through an adaptive canceler are obtained. The adaptive canceler is implemented using the sampled matrix inversion algorithm. Because of finite sampling, the quiescent compressed pulse sidelobe levels are degraded due to the preprocessing of the main channel input data stream (the uncompressed pulse) through an adaptive canceler. It is shown that if N is the number of input canceler channels (main and auxiliaries) and K is the number of independent samples per channel, then K/N can be significantly greater than one in order to retain sidelobes that are close to the original quiescent sidelobe level (with no adaptive canceler). Also it is shown that the maximum level of degradation is independent of whether pulse compression occurs before or after the adaptive canceler if the uncompressed pulse is completely contained within the K samples that are used to calculate the canceler weights. This same analysis can be used to predict the canceler noise power level that is induced by having the desired signal present in the canceler weight calculation  相似文献   

2.
一种基于特征空间的自适应天线旁瓣相消算法   总被引:1,自引:0,他引:1  
把常规自适应天线旁瓣相消算法和特征空间技术相结合,提出了一种新的自适应天线旁瓣相消算法。该算法把常规自适应天线旁瓣相消算法的权矢量向由干扰特征矢量组成的干扰子空间投影,避免了由小特征值对应特征矢量组成的噪声子空间对权矢量的影响,与常规自适应天线旁瓣相消算法相比,该算法具有更好的干扰对消性能,其输出干扰对消比和波束方向图都能在很少的快拍下收敛。计算机仿真结果证实了这种算法的有效性。  相似文献   

3.
Reiterative median cascaded canceler for robust adaptive array processing   总被引:1,自引:0,他引:1  
A new robust adaptive processor based on reiterative application of the median cascaded canceler (MCC) is presented and called the reiterative median cascaded canceler (RMCC). It is shown that the RMCC processor is a robust replacement for the sample matrix inversion (SMI) adaptive processor and for its equivalent implementations. The MCC, though a robust adaptive processor, has a convergence rate that is dependent on the rank of the input interference-plus-noise covariance matrix for a given number of adaptive degrees of freedom (DOF), N. In contrast, the RMCC, using identical training data as the MCC, exhibits the highly desirable combination of: 1) convergence-robustness to outliers/targets in adaptive weight training data, like the MCC, and 2) fast convergence performance that is independent of the input interference-plus-noise covariance matrix, unlike the MCC. For a number of representative examples, the RMCC is shown to converge using ~ 2.8N samples for any interference rank value as compared with ~ 2N samples for the SMI algorithm. However, the SMI algorithm requires considerably more samples to converge in the presence of outliers/targets, whereas the RMCC does not. Both simulated data as well as measured airborne radar data from the multichannel airborne radar measurements (MCARM) space-time adaptive processing (STAP) database are used to illustrate performance improvements over SMI methods.  相似文献   

4.
An extended sample matrix inversion (SMI) algorithm can be used for minimizing the mse (mean-squared error) between the output of an N-element adaptive array and a desired reference signal. This algorithm is shown to yield mse within 3 dB of minimum (on the average) after (2N - 1) observations of the antenna element outputs.  相似文献   

5.
针对标准粒子滤波算法诊断步数多且诊断结果噪声水平高的问题,提出伪协方差和自适应似然分布结合的改进粒子滤波算法。该算法通过使用伪协方差代替了粒子集协方差,保证采样得到的粒子能够更真实地反映突变情况,减少诊断步数;通过对似然分布自适应调整,增加其与先验分布的重叠区域,提高抽样率,增加有效粒子数,降低诊断结果噪声水平。发动机健康参数估计仿真结果表明:与标准粒子滤波算法相比,改进的粒子滤波算法能使诊断速度提高约27%,诊断精度提高约38%,有效地减少了突变故障的诊断步数,并显著降低了诊断结果的噪声水平。  相似文献   

6.
A partially adaptive array is one in which elements of a phased array are controlled or adaptively weighted in groups or in which certain elements, called auxiliary elements, are made controllable. Mathematically, this type of array is formed by transforming all of the elements of an array by a nonsquare matrix such that the resulting output vector has a length less than the number of array elements. It is shown that there is an equivalent matrix transform that can effectively be utilized in analyzing the partially adaptive array's performance when a small number of external jammers are present. Processor implementation and convergence rate considerations lead to the desirability of reducing the dimensionality of the cancellation processor while maintaining good sidelobe interference protection. A meaningful measure of canceller performance is to compute the optimal output signal-to-noise ratio. This expression is a function of the jammer, direction-of-arrival vectors (DOAVs), jammer powers, the array steering vector, and internal noise. It is shown that if this expression is computed for the fully adaptive array then it is easily computed for the partially adaptive array by transforming the jammer DOAVs and the steering vector by the orthogonal projection matrix defined by the rows of the subarray transformation matrix and substituting these vectors back into the original expression for the fully adaptive array  相似文献   

7.
Covariance matrix estimation errors and diagonal loading inadaptive arrays   总被引:2,自引:0,他引:2  
Simulations were used to investigate the effect of covariance matrix sample size on the system performance of adaptive arrays using the sample matrix inversion (SMI) algorithm. Inadequate estimation of the covariance matrix results in adapted antenna patterns with high sidelobes and distorted mainbeams. A technique to reduce these effects by modifying the covariance matrix estimate is described from the point of view of eigenvector decomposition. This diagonal loading technique reduces the system nulling capability against low-level interference, but parametric studies show that it is an effective approach in many situations  相似文献   

8.
Narrow-beam, low-sidelobe antennas may be used to enhance communication in the presence of sidelobe interferers. Protection against main-beam interferers as well can be obtained through the use of an adaptive multibeam antenna. Such an antenna, suitable for time-multiplexed, multichannel signals is described here. The objective is to permit successful communication and signal direction-of-arrival tracking in the presence of a large number of sidelobe interferers and a small number of main-beam interferers.  相似文献   

9.
To fully utilize the theoretical processing gain achievable when an adaptive array and frequency hopping are combined, frequency compensation is required. Improved versions of an anticipative adaptive array are examined that provide efficient compensation by adapting the complex weights at each antenna element to the appropriate values for a carrier frequency before that frequency is received. The underlying adaptive algorithm used is the maximum algorithm. Computer simulation results are used to compare the different versions of anticipative processing. These results show that an appropriate version ensures the rapid convergence of weights to values that provide wideband nulling of the interference and noise  相似文献   

10.
Median cascaded canceller for robust adaptive array processing   总被引:2,自引:0,他引:2  
A median cascaded canceller (MCC) is introduced as a robust multichannel adaptive array processor. Compared with sample matrix inversion (SMI) methods, it is shown to significantly reduce the deleterious effects of impulsive noise spikes (outliers) on convergence performance of metrics; such as (normalized) output residue power and signal to interference-plus-noise ratio (SINR). For the case of no outliers, the MCC convergence performance remains commensurate with SMI methods for several practical interference scenarios. It is shown that the MCC offers natural protection against desired signal (target) cancellation when weight training data contains strong target components. In addition, results are shown for a high-fidelity, simulated, barrage jamming and nonhomogenous clutter environment. Here the MCC is used in a space-time adaptive processing (STAP) configuration for airborne radar interference mitigation. Results indicate the MCC produces a marked SINR performance improvement over SMI methods.  相似文献   

11.
An instrumental variable (IV) approach is presented for estimating the weights of an adaptive antenna array. Theoretical analysis of the IV method shows that the antenna gain weights are independent of finitely correlated noise, so that unbiased estimation of signal arrival angles is possible. Only matrix inversions are required to compute the weight estimates. In this sense, the IV method provides performance comparable with eigenvector techniques but with lower computational burden. Both minimal and overdetermined IV estimators are derived. The overdetermined estimators give the same theoretical array weights as minimal estimators, but yield more accurate weight estimates in real data situations. Simulation results are presented to compare these IV methods with one another and with conventional matrix inversion weight estimators. In these examples it is seen that IV methods are able to resolve closely spaced interference sources when conventional matrix inversion techniques cannot. It is also shown that overdetermined methods are capable of providing weight estimates with lower variances than those of minimal methods  相似文献   

12.
The performance of electronically scanned radar systems is evaluated for clear and barrage jamming environments. Radar figures of merit in jamming are derived for search and track modes and are directly related to antenna pattern relative sidelobe levels. A random sidelobe model is analyzed with various numbers of independent jammers. Probability distributions of detection probability are derived to determine detection performance versus average jamming level and number of jammers.  相似文献   

13.
The sample matrix inversion (SMI) technique is used for Doppler and/or array processing. Previous analysis of the technique has been in terms of signal-to-interference plus noise ratio (SINR). For Gaussian statistics, this performance measure gives the same loss values as does a probability of detection analysis for linear-time invariant systems. It is often somewhat less valid for nonlinear or time variant systems. As SMI is a nonlinear technique, a probability of detection analysis has been performed. It is shown that the detection loss is larger than that computed by the SINR measure. It is also shown that though the loss predicted by the SINR measure only depends upon the number of measurements used to estimate the covariance matrix, the detection loss depends upon the false alarm probability and the number of adaptable elements in addition to the number of measurements.  相似文献   

14.
O.L. Frost (1972) introduced a linearly constrained optimization algorithm that allows certain main beam properties to be preserved while good cancellation is attained. An open-loop implementation of this algorithm is developed. This implementation is shown to be equivalent to the technique developed by C.W. Jim (1977), L.J. Griffiths and C.W. Jin (1982), and K.M. Buckley and L.J. Griffiths (1982) whereby the constrained problem is reduced to an unconstrained problem. Analytical results are presented for the convergence rate when the sampled matrix inversion (SMI) or Gram-Schmidt (GS) algorithm are employed. It has been previously shown that the steady-state solution for the optimal weights is identical for both constrained and reduced unconstrained problems. It is shown that if the SMI or GS algorithm is employed, then the transient weighting vector solution for the constrained problem is identical to the equivalent transient weight vector solution for the reduced unconstrained implementation  相似文献   

15.
A method of estimating the angle of arrival of a signal at an array of sensors in an external noise environment is outlined. The development is based on a maximum likelihood estimator and leads naturally to adaptive sum and difference beams which null the external noise sources. An algorithm for estimating angle of arrival, based on the outputs of adaptively distorted sum and differnce beams, is shown to perform well in the presence of sidelobe and/or main beam interference.  相似文献   

16.
针对经典Kalman滤波和扩展Kalman滤波融合算法存在的计算量大、精度低、实时性差的缺点,引入了改进的Sage-Husa自适应扩展Kalman滤波算法。该算法对经典扩展Kalman滤波算法进行了自适应改进,并在此基础上利用加权渐消记忆法获取了遗忘因子,并通过预测残差得出了最优解。同时,用调整有偏增益估计的措施来保证系统噪声预测方差矩阵与噪声预测方差矩阵的对称性和正定性,对滤波器发散进行了有效的抑制,减少了算法的计算量。实验结果表明,该算法有效改善了可靠性、精确性及自适应能力。  相似文献   

17.
The performance of the sampled matrix inversion (SMI) adaptive algorithm in colored noise is investigated using the Gram-Schmidt (GS) canceler as an analysis tool. Lower and upper bounds of average convergence are derived, indicating that average convergence slows as the input time samples become correlated. When the input samples are uncorrelated, the fastest SMI algorithm convergence occurs. When the input samples are correlated then the convergence bounds depend on the number of channels N, the number of samples per channels K , and the eigenvalues associated with K×K correlation matrix of the samples in a given channel. This matrix is assumed identical for all channels  相似文献   

18.
Airborne/spacebased radar STAP using a structured covariance matrix   总被引:5,自引:0,他引:5  
It is shown that partial information about the airborne/spacebased (A/S) clutter covariance matrix (CCM) can be used effectively to significantly enhance the convergence performance of a block-processed space/time adaptive processor (STAP) in a clutter and jamming environment. The partial knowledge of the CCM is based upon the simplified general clutter model (GCM) which has been developed by the airborne radar community. A priori knowledge of parameters which should be readily measurable (but not necessarily accurate) by the radar platform associated with this model is assumed. The GCM generates an assumed CCM. The assumed CCM along with exact knowledge of the thermal noise covariance matrix is used to form a maximum likelihood estimate (MLE) of the unknown interference covariance matrix which is used by the STAP. The new algorithm that employs the a priori clutter and thermal noise covariance information is evaluated using two clutter models: 1) a mismatched GCM, and 2) the high-fidelity Research Laboratory STAP clutter model. For both clutter models, the new algorithm performed significantly better (i.e., converged faster) than the sample matrix inversion (SMI) and fast maximum likelihood (FML) STAP algorithms, the latter of which uses only information about the thermal noise covariance matrix.  相似文献   

19.
The analysis of an adaptive detection algorithm described previously by the author (1985, 1986) is extended. Previously, the performance was evaluated for the case of a signal corresponding exactly to the steering vector used in the derivation of the algorithm. Here the performance for signals arriving from other directions is evaluated. It is shown that these signals are rejected much more strongly than would be suggested by the sidelobe levels of the adapted patterns themselves  相似文献   

20.
Degradation of antenna performance by reflector surface distortion, which lowers gain and increases sidelobe levels, is addressed. Distortion compensation concepts based on the applications of properly matched array feeds are presented. Results of conceptual developments, numerical simulations, and measurement verifications are presented in support of this approach, with particular attention to the measurement technique. It is shown that the concept is most useful for overcoming the deterioration effects of slowly varying surface distortions, which would make the method very useful for future large space and ground antennas. It is further shown that for a typical, slowly varying thermal or gravitational surface distortion, a 19-element array feed can improve the reflector performance considerably  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号