首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 37 毫秒
1.
In this paper, formation tracking control problems for second-order multi-agent systems (MASs) with time-varying delays are studied, specifically those where the position and velocity of followers are designed to form a time-varying formation while tracking those of the leader. A neigh-boring relative state information based formation tracking protocol with an unknown gain matrix and time-varying delays is presented. The formation tracking problems are then transformed into asymptotically stable problems. Based on the Lyapunov-Krasovskii functional approach, condi-tions sufficient for second-order MASs with time-varying delays to realize formation tracking are examined. An approach to obtain the unknown gain matrix is given and, since neighboring relative velocity information is difficult to measure in practical applications, a formation tracking protocol with time-varying delays using only neighboring relative position information is introduced. The proposed results can be used on target enclosing problems for MASs with second-order dynamics and time-varying delays. An application for target enclosing by multiple unmanned aerial vehicles (UAVs) is given to demonstrate the feasibility of theoretical results.  相似文献   

2.
This work is concerned with the assignment of a desired PD-eigenstructure for linear time-varying systems. Despite its well-known limitations, gain scheduling control appeared to be a focus of the research efforts. Scheduling of frozen-time, frozen-state controllers for fast time-varying dynamics is known to be mathematically fallacious, and practically hazardous. Therefore, recent research efforts are being directed towards applying time-varying controllers. In this paper we: 1) introduce a differential algebraic eigenvalue theory for linear time-varying systems; and 2) propose a PD-eigenstructure assignment scheme via a differential Sylvester equation and a command generator tracker (CGT) for linear time-varying systems. The PD-eigenstructure assignment is utilized as a regulator. A feedforward gain for tracking control is computed by using the command generator tracker. The whole design procedures of the proposed PD-eigenstructure assignment scheme are systematic in nature. The scheme could be used to determine the stability of linear time-varying systems easily as well as to provide a new horizon of designing controllers for the linear time-varying systems. A missile flight control application is presented to validate the proposed schemes.  相似文献   

3.
This paper studies the attitude synchronization tracking control of spacecraft formation flying with a directed communication topology and presents three different controllers. By introducing a novel error variable associated with rotation matrix, a decentralized attitude synchronization controller, which could obtain almost global asymptotical stability of the closed-loop system, is developed. Then, considering model uncertainties and unknown external disturbances, we propose a robust adaptive attitude synchronization controller by designing adaptive laws to estimate the unknown parameters. After that, the third controller is proposed by extending this method to the case of time-varying communication delays via Lyapunov–Krasovskii analysis. The distinctive feature of this work is to address attitude coordinated control with model uncertainties, unknown disturbances and time-varying delays in a decentralized framework, with a strongly connected directed information flow. It is shown that tracking and synchronization of an arbitrary desired attitude can be achieved when the stability condition is satisfied. Simulation results are provided to demonstrate the effectiveness of the proposed control schemes.  相似文献   

4.
张保群  宋申民  陈兴林 《航空学报》2011,32(9):1644-1655
研究跟踪时变参考姿态情况下控制输入饱和的编队飞行卫星姿态协同控制问题.针对不同情形,通过恰当地利用双曲正切函数,提出3种连续有界的协同控制器.首先,在无外部扰动和参数不确定性的情况下,提出一种理想的饱和协同控制器.进一步,考虑角速度不可测量的情况,利用无源滤波器设计无角速度反馈的饱和协同控制器.当外部扰动和参数不确定性...  相似文献   

5.
《中国航空学报》2021,34(3):225-240
In this paper, the relative sliding motion between the target and the manipulator’s end-effector is considered and characterized as a unilateral contact constraint. A new possible solution is presented to estimate the inertial parameters of a non-cooperative target while the relative sliding motion exists. First, the detailed analysis of the dynamical model is presented, and a parameter-explicit linear time-varying model is obtained. Then, an extended state observer is constructed based on the new model, which can effectively estimate the unknown inertial parameters of the target when relative sliding motion exists. As the modified reactionless controller requires the knowledge of inertial parameters, a hybrid post-capture control scheme is also established based on the switch law between different controllers. The correctness and efficiency of the proposed algorithm are validated by numerical simulation, which proves a potential framework for the non-cooperative target post-capture operation.  相似文献   

6.
高超声速飞行器大包线切换LPV控制方法   总被引:6,自引:0,他引:6  
张增辉  杨凌宇  申功璋 《航空学报》2012,33(9):1706-1716
高超声速飞行器飞行包线和参数变化范围大,气动参数存在较强不确定性,要求控制器能够适应大的飞行包线并具有较好的鲁棒性。针对上述问题,提出一种基于间隙度量的大包线滞后切换线性变参数(LPV)控制方法。依照时变参数将设计包线划分为若干子区域,将多胞理论和间隙度量引入控制器求解,提出了基于最优间隙度量的LPV控制方法,并利用此方法独立设计各子区域的LPV控制器,以改善控制器控制性能和鲁棒性能;利用基于重叠区域的滞后切换策略实现大包线内各子区域控制器的切换,以抑制切换面附近控制器的切换抖动,并证明了切换闭环系统的稳定性;最后以某型高超声速飞行器为对象设计了大包线滞后切换LPV控制器。仿真结果表明该方法可实现控制指令的精确跟踪,提高设计包线内LPV控制器的控制性能和鲁棒性能,并能保证切换系统的稳定性。  相似文献   

7.
This paper investigates two finite-time controllers for attitude control of spacecraft based on rotation matrix by an adaptive backstepping method. Rotation matrix can overcome the draw- backs of unwinding which makes a spacecraft perform a large-angle maneuver when a small-angle maneuver in the opposite rotational direction is sufficient to achieve the objective, With the use of adaptive control, the first robust finite-time controller is continuous without a chattering phenom- enon. The second robust finite-time controller can compensate external disturbances with unknown bounds. Theoretical analysis shows that both controllers can make a spacecraft following a time-varying reference attitude signal in finite time and guarantee the stability of the overall closed-loop system. Numerical simulations are presented to demonstrate the effectiveness of the proposed control schemes.  相似文献   

8.
切换拓扑下无人机集群系统时变编队控制   总被引:4,自引:2,他引:2  
针对多无人机(UAV)间通信拓扑可能发生变化的情况,研究了具有二阶积分特性的无人机集群系统的轨迹跟踪与时变编队控制问题。基于一致性方法设计了编队控制器,将编队控制问题转换成闭环系统的稳定性问题,引入了切换拓扑平均驻留时间的概念,并在此基础上利用线性矩阵不等式(LMI)方法,给出了控制器设计步骤。通过构造分段连续Lyapunov函数,证明了切换拓扑下无人机集群系统能够实现对指定轨迹的跟踪并且实现时变编队飞行。以三维空间运动的无人机集群系统为例进行了仿真验证,结果表明本文所提方法能够解决切换拓扑下无人机集群系统的轨迹跟踪与时变编队问题。  相似文献   

9.
《中国航空学报》2020,33(1):271-281
This paper investigates the problem of Spacecraft Formation-Containment Flying Control (SFCFC) when the desired translational velocity is time-varying. In SFCFC problem, there are multiple leader spacecraft and multiple follower spacecraft and SFCFC can be divided into leader spacecraft’s formation control and follower spacecraft’s containment control. First, under the condition that only a part of leader spacecraft can have access to the desired time-varying translational velocity, a velocity estimator is designed for each leader spacecraft. Secondly, based on the estimated translational velocity, a distributed formation control algorithm is designed for leader spacecraft to achieve the desired formation and move with the desired translational velocity simultaneously. Then, to ensure all follower spacecraft converge to the convex hull formed by the leader spacecraft, a distributed containment control algorithm is designed for follower spacecraft. Moreover, to reduce the dependence of the designed control algorithms on the graph information and increase system robustness, the control gains are changing adaptively and the parametric uncertainties are handled, respectively. Finally, simulation results are provided to illustrate the effectiveness of the theoretical results.  相似文献   

10.
Optimal and suboptimal guidance laws for short-range homing missiles are developed and compared to the commonly mechanized quidance law of proportional navigation. The optimal controller is derived as an optimal feedback regulator; the suboptimal controller is an approximation of the optimal regulator and consists of timevarying proportional navigation plus a time-varying gain term times a calculated target acceleration. Monte Carlo studies of the three controllers show that the optimal and suboptimal controllers are much superior to proportional navigation for the case of combined constant target acceleration, line-of-sight rate noise, and missile acceleration saturation.  相似文献   

11.
This paper deals with the problem of cooperative attitude tracking with time-varying communication delays as well as the delays between inter-synchronization control parts and self-tracking control parts in the spacecraft formation flying. First, we present the attitude synchronization tracking control algorithms and analyze the sufficient delay-dependent stability condition with the choice of a Lyapunov function when the angular velocity can be measured. More specifically, a class of linear filters is developed to derive an output feedback control law without having direct information of the angular velocity, which is significant for practical applications with low-cost configurations of spacecraft. Using a well-chosen Lyapunov-Krasovskii function, it is proven that the presented control law can make the spacecraft formation attitude tracking system synchronous and achieve exponential stability, in the face of model uncertainties, as well as non-uniform time-varying delays in communication links and different control parts. Finally, simulation results are presented to demonstrate the effectiveness of the proposed control schemes.  相似文献   

12.
In this paper, we consider the coordinated attitude control problem of spacecraft formation with communication delays, model and disturbance uncertainties, and propose novel synchronized control schemes. Since the attitude motion is essential in non-Euclidean space, thus, unlike the existing designs which describe the delayed relative attitude via linear algorithm, we treat the attitude error and the local relative attitude on the nonlinear manifold-Lie group, and attempt to obtain coupling attitude information by the natural quaternion multiplication. Our main focus is to address two problems:1) Propose a coordinated attitude controller to achieve the synchronized attitude maneuver, i.e., synchronize multiple spacecraft attitudes and track a time-varying desired attitude; 2) With known model information, we achieve the synchronized attitude maneuver with disturbances under angular velocity constraints. Especially, if the formation does not have any uncertainties, the designer can simply set the controller via an appropriate choice of control gains to avoid system actuator saturation. Our controllers are proposed based on the Lyapunov-Krasovskii method and simulation of a spacecraft formation is conducted to demonstrate the effectiveness of theoretical results.  相似文献   

13.
《中国航空学报》2020,33(11):2907-2920
This paper investigates a time-varying anti-disturbance formation problem for a group of quadrotor aircrafts with time-varying uncertainties and a directed interaction topology. A novel Finite-Time Convergent Extended State Observer (FTCESO) based fully-distributed formation control scheme is proposed to enhance the disturbance rejection and the formation tracking performances for networked quadrotors. By adopting the hierarchical control strategy, the multi-quadrotor system is separated into two subsystems: the outer-loop cooperative subsystem and the inner-loop attitude subsystem. In the outer-loop subsystem, with the estimation of disturbing forces and uncertain dynamics from FTCESOs, an adaptive consensus theory based cooperative controller is exploited to ensure the multiple quadrotors form and maintain a time-varying pattern relying only on the positions of the neighboring aircrafts. In the inner-loop subsystem, the desired attitude generated by the cooperative control law is stably tracked under a FTCESO-based attitude controller in a finite time. Based on a detailed algorithm to specify the cooperative control protocol, the feasibility condition to achieve the time-varying anti-disturbance formation tracking is derived and the rigorous analysis of the whole closed-loop multi-quadrotor system is given. Some numerical examples are conducted to intuitively demonstrate the effectiveness and the improvements of the proposed control framework.  相似文献   

14.
周思全  董希旺  李清东  任章 《航空学报》2020,41(z1):723767-723767
研究了无人机-无人车异构系统时变输出编队控制与扰动抑制问题,要求多无人机与无人车在受到未知外部扰动的情况下,保持设计的输出时变编队构型。首先,对无人机与无人车进行单体运动学与动力学建模,同时建立扰动模型,并引入代数图论概念,建立异构集群系统的协同控制模型。然后,对各无人机-无人车设计了具有分层架构的分布式时变输出编队控制器,包含基于一致性理论的编队中心估计项和基于内模原理的扰动抑制补偿项。进一步分析异构系统实现输出时变编队的可行性条件,给出了分布式编队控制器的参数选取算法,并证明了时变编队控制器构成的闭环系统的稳定性。最后,通过仿真算例来验证所设计的编队控制器的有效性。  相似文献   

15.
A new attitude controller is proposed for spacecraft whose actuator has variable input saturation limit. There are three identical flywheels orthogonally mounted on board. Each rotor is driven by a brushless DC motor (BLDCM). Models of spacecraft attitude dynamics and flywheel rotor driving motor electromechanics are discussed in detail. The controller design is similar to saturation limit linear assignment. An auxiliary parameter and a boundary coefficient are imported into the controller to guarantee system stability and improve control performance. A time-varying and state-dependent flywheel output torque saturation limit model is established. Stability of the closed-loop control system and asymptotic convergence of system states are proved via Lyapunov methods and LaSalle invariance principle. Boundedness of the auxiliary parameter ensures that the control objective can be achieved, while the boundary parameter’s value makes a balance between system control performance and flywheel utilization efficiency. Compared with existing controllers, the newly developed controller with variable torque saturation limit can bring smoother control and faster system response. Numerical simulations validate the effectiveness of the controller.  相似文献   

16.
Robust Hybrid Control for Ballistic Missile Longitudinal Autopilot   总被引:1,自引:1,他引:0  
This paper investigates the boost phase’s longitudinal autopilot of a ballistic missile equipped with thrust vector control. The existing longitudinal autopilot employs time-invariant passive resistor-inductor-capacitor (RLC) network compensator as a control strategy, which does not take into account the time-varying missile dynamics. This may cause the closed-loop system instability in the presence of large disturbance and dynamics uncertainty. Therefore, the existing controller should be redesigned to achieve more stable vehicle response. In this paper, based on gain-scheduling adaptive control strategy, two different types of optimal controllers are proposed. The first controller is gain-scheduled optimal tuning-proportional-integral-derivative (PID) with actuator constraints, which supplies better response but requires a priori knowledge of the system dynamics. Moreover, the controller has oscillatory response in the presence of dynamic uncertainty. Taking this into account, gain-scheduled optimal linear quadratic (LQ) in conjunction with optimal tuning-compensator offers the greatest scope for controller improvement in the presence of dynamic uncertainty and large disturbance. The latter controller is tested through various scenarios for the validated nonlinear dynamic flight model of the real ballistic missile system with autopilot exposed to external disturbances.  相似文献   

17.
异构多智能体系统分组输出时变编队跟踪控制   总被引:1,自引:1,他引:0  
田磊  赵启伦  董希旺  李清东  任章 《航空学报》2020,41(7):323727-323727
空地协同控制是前沿的热点研究之一,以无人机、无人车为代表的空地智能体动力学模型的差异为研究带来了挑战。研究了高阶异构多智能体系统在有向拓扑条件下的分组输出时变编队跟踪控制问题,提出了虚拟领导者、分组领导者以及跟随者组成的三层协同控制架构。虚拟领导者用于规划整个多智能体系统的状态轨迹,分组领导者跟踪虚拟领导者所提供的轨迹信息,并相互协作以实现分组间的协同配合。跟随者跟踪分组领导者的输出并实现期望的输出编队。在有向通信拓扑结构条件下,基于局部邻居间的相对信息、观测器理论和滑模控制理论构造了控制协议,利用Lyapunov稳定性理论证明协议的有效性。数值仿真结果表明提出的方法能够实现无人机、无人车等异构智能体的空地协同,具有较好的工程应用价值。  相似文献   

18.
This paper investigates the problem of robust reliable control for the spacecraft rendezvous with limited-thrust. Based on the Clohessy–Wiltshire (C–W) equations and by considering the uncertainties and the possible failures, the dynamic model for spacecraft rendezvous is proposed, and the orbital transfer control problem is transformed into a stabilization problem. Then, by a Lyapunov approach, the existence conditions for admissible controllers are formulated in the form of linear matrix inequalities (LMIs), and the controller design is cast into a convex feasibility problem subject to LMI constraints. With the obtained controllers, the rendezvous can be accomplished with the limited-thrust in spite of the possible thruster failures. The effectiveness of the proposed approach is illustrated by simulation examples.  相似文献   

19.
The problem of controlling flexible space structures in the presence of significant uncertainties using only position measurements is considered. Adaptive controllers, which are capable of controlling partially known dynamical systems and delivering good performance by providing a time-varying compensation on-line, are desirable for such system. We present an adaptive controller which can globally stabilize a class of flexible structures. This controller is applicable whether position measurements, rate measurements, or combinations thereof are available, as well as for colocated and noncolocated actuator-sensor pairs that are sufficiently close. The improvement in performance generated using such controllers is demonstrated using two practical structural system  相似文献   

20.
质量矩导弹构型及自适应控制律设计   总被引:1,自引:0,他引:1  
 质量矩导弹姿态运动模型含有活动质量块的位置、速度和加速度项,是典型的带有输入非线性的快时变多体系统。从构型和控制律设计两方面入手研究该类导弹跟踪控制问题。通过对姿态动力学模型的深入分析,获得了一种使系统具备良好动态品质的构型。以此为基础,建立了仿射型姿态运动模型,利用退步方法设计了控制律;考虑到系统中存在气动参数、外界扰动和执行机构动态特性等不确定因素,设计了鲁棒自适应补偿项;最后进行数学仿真,通过与标准退步控制律进行比较,验证了该控制律的有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号