首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
航空   3篇
航天技术   6篇
航天   4篇
  2014年   1篇
  2013年   1篇
  2011年   1篇
  2002年   3篇
  2001年   1篇
  1995年   1篇
  1984年   2篇
  1982年   1篇
  1973年   1篇
  1966年   1篇
排序方式: 共有13条查询结果,搜索用时 328 毫秒
1.
Eiges  P. E.  Zastenker  G. N.  Safrankova  J.  Nemecek  Z.  Eismont  N. A. 《Cosmic Research》2001,39(5):432-438
Based on simultaneous measurements of ion fluxes made onboard the closely separated satellites Interball-1and Magion-4, the propagation velocity of middle-scale plasma structures in the Earth's foreshock relative to the solar wind flow is estimated. The derived value of this velocity allows these structures to be identified as a fast magnetosonic wave propagating upstream of the solar wind inflowing the Earth's bow shock. An evaluation is also made of the correlation length of these disturbances in the plane perpendicular to the Sun–Earth line. This length is approximately equal to 2R E.  相似文献   
2.
The paper is based on the electron and ion energy spectra measurement on board the main spacecraft of the APEX mission. During the active phase of the experiment an intense electron beam was emitted from the main satellite. The basic cycle of the electron injection is formed by current pulses of different frequencies, duration and intensity. The spacecraft potential changes due to the gun operation were compensated by a low energy Xe plasma generator. The data show that the response of the environment to the beam emission depends not only on injection parameters but on the spacecraft position and orientation with respect to the magnetic field as well. The typical response is an increase of the intensity of the low energy (less than 1 keV) electrons in all directions. In addition, strong field aligned fluxes of electrons and/or ions are observed with energies below the gun energy. An attempt to classify different types of response and to find possible mechanisms which can explain the observed phenomena is made in the present paper.  相似文献   
3.
The Hard X-ray Spectrometer aboard the SMM detected several events of energy release late in the development of two-ribbon flares. One such event, at 21:12 UT on 21 May, 1980 (~ 20 min after the flare onset and 15 min after the peak of the impulsive phase) is studied in detail. The site of new brightening first became visible in hard X-rays (> 22 keV) and only afterwards showed up at lower energies. It was clearly located high in the corona so that one can identify it with energy release at the tops of newly formed post-flare loops. Thus, if the Kopp and Pneuman model of the loop formation is adopted, we may have imaged here a reconnection process in the solar corona. An attempt is made to estimate physical parameters at the reconnection site.  相似文献   
4.
5.
While imaging giant post-flare arches in the solar corona, the Hard X-Ray Spectrometer aboard the SMM detected thermal disturbances propagating through the corona after two-ribbon flares. The speed of propagation is close to, or below, 10 km s?1, and no obvious time-variation of the speed is indicated in the HXIS data. For subsequent two-ribbon flares in the same active region, these thermal disturbances (waves) exhibit highly homologous properties; thus the waves appear to propagate through preexisting arches formed after earlier flares. Temperatures of > 20 × 106 K have been detected in these moving phenomena. We suggest that we see here in X-rays upper products of the consecutive reconnections which create the post-flare loops below. Temperature maps in fine field of view of HXIS offer now a new possibility to detect postflare arches in the corona built during two-ribbon flares.  相似文献   
6.
High time resolution data obtained by VDP and FM-31 instruments onboard INTERBALL-1 spacecraft were used to study the small-scale correlation between solar wind ion flux and magnetic field magnitude in the Earth's foreshock. Correlated quasi-harmonic structures were found simultaneously in ion flux and magnetic field data. Statistical analysis of these structures was done and a summary of obtained results is presented. Multipoint observations by INTERBALL-1 and MAGION-4 were used to estimate spatial correlation of small quasi-harmonic structures.  相似文献   
7.
Design of the plasma spectrometer BMSW (Fast Monitor of the Solar Wind, possessing high temporal resolution) is described in the paper, as well as its characteristics and modes of operation. Some examples of measurements of various properties of the solar wind, made with this instrument installed onboard the high-apogee satellite Spektr-R, are presented.  相似文献   
8.
This paper describes the results of studying the helium component of the solar-wind ion-flux measurement by the BMSW instrument on the Spektr-R satellite with a time resolution of 3 s. In contrast to most previous works that presented values averaged over large (hourly average or daily average) intervals, we have shown that the relative helium-ion abundance in the solar wind experiences considerable (by a few percent and even 10%) variations on such short intervals as 10 seconds or even several seconds.  相似文献   
9.
Multi-spacecraft tracing of the high latitude magnetopause (MP) and boundary layers and Interball-1 statistics indicate that:
1. (a) The turbulent boundary layer (TBL) is a persistent feature in the region of the cusp and ‘sash’, a noticeable part of the disturbances weakly depends on the interplanetary magnetic field By component; TBL is a major site for magnetosheath (MSH) plasma penetration inside the magnetosphere through percolation and local reconnection.
2. (b) The TBL disturbances are mainly inherent with the characteristic kinked double-slope spectra and, most probably, 3-wave cascading. The bi-spectral phase coupling indicates self-organization of the TBL as the entire region with features of the non-equilibrium multi-scale and multi-phase system in the near-critical state.
3. (c) We've found the different outer cusp topologies in summer/winter periods: the summer cusp throat is open for the decelerated MSH flows, the winter one is closed by the distant MP with a large-scale (several Re) diamagnetic ‘plasma ball’ inside the MP; the ‘ball’ is filled from MSH through patchy merging rather than large-scale reconnection.
4. (d) A mechanism for the energy release and mass inflow is the local TBL reconnection, which operates at the larger scales for the average anti-parallel fields and at the smaller scales for the nonlinear fluctuating fields; the latter is operative throughout the TBL. The remote from TBL anti-parallel reconnection seems to happen independently.

References

Chen, J., Fritz, T.A., Sheldon, R.B., Spencer, H.E., Spjeldvik, W.N. et al., 1997. Temporary confined population in the polar cap during the August 27, 1996 geomagnetic field distortion period. Geophys. Res. Lett. 24, p. 1447. Full Text via CrossRef | View Record in Scopus | Cited By in Scopus (51)
Chen, J. and Fritz, T.A., 1998. Correlation of cusp MeV helium with turbulent ULF power spectra and its implications. Geophys. Res. Lett. 25, p. 4113. Full Text via CrossRef | View Record in Scopus | Cited By in Scopus (34)
Consolini, G. and Lui, A.T., 2000. Symmetry breaking and nonlinear wave-wave interaction in current disruption: possible evidence for a phase transition. In: Magnetospheric Current SystemsGeophysical Monograph 118, American Geophysical Union, Washington D.C., pp. 395–401.
Dubinin, E., Skalsky, A., Song, P., Savin, S., Kozyra, J. et al., 2001. Polar-Interball coordinated observations of plasma characteristics in the region of the northern and southern distant cusps. J. Geophys. Res. accepted .
Fedorov, A., Dubinin, E., Song, P., Budnick, E., Larson, P. and Sauvaud, J.A., 2000. Characteristics of the exterior cusp for steady southward IMF: Interball observations. J. Geophys. Res. 105, pp. 15,945–15,957.
Fritz, T.A., Chen, J. and Sheldon, R.B., 2000. The role of the cusp as a source for magnetospheric particles: a new paradigm?. Adv. Space Res. 25, pp. 1445–1457. Article | PDF (871 K) | View Record in Scopus | Cited By in Scopus (18)
Haerendel, G. and Paschmann, G., 1975. Entry of solar wind plasma into the magnetosphere. In: Hultqvist, B. and Stenflo, L., Editors, 1975. Physics of the Hot Plasma in the Magnetosphere, Plenum, NY, p. 23.
Haerendel, G., 1978. Microscopic plasma processes related to reconnection. J. Atmos. Terr. Phys. 40, pp. 343–353. Abstract | PDF (1141 K) | View Record in Scopus | Cited By in Scopus (27)
Klimov, S. et al., 1997. ASPI Experiment: Measurements of Fields and Waves Onboard the INTERBALL-1 Spacecraft. Ann. Geophys. 15, pp. 514–527. Full Text via CrossRef | View Record in Scopus | Cited By in Scopus (88)
Kuznetsova, M.M. and Zelenyi, L.M., 1990. The theory of FTE: Stochastic percolation model. In: Russell, C.T., Priest, E.R. and Lee, L.C., Editors, 1990. Physics of Magnetic Flux RopesAmerican Geophysical Union, pp. 473–488.
La Belle-Hamer, A.L., Otto, A. and Lee, L.C., 1995. Magnetic reconnection in the presence of sheared flow and density asymmetry: application to the Earth's magnetopause. J. Geophys. Res. 100, pp. 11,875–11,889.
Lagoutte, D., Lefeuvre, F. and Hanasz, J., 1989. Application of bi-coherence analysis in study of wave interactions in space plasma. J. Geophys. Res. 94, p. 435. Full Text via CrossRef
Maynard, N.C., Savin, S., Erickson, G.A., Kawano, H. et al., 2001. Observations of fluxes of magnetosheath origin by Polar and Interball at high latitudes behind the terminator-relationships to the magnetospheric “sash”. J. Geophys. Res. 104, pp. 6097–6122. Full Text via CrossRef
Merka, J., Safrankova, J., Nemecek, Z., Fedorov, A., Borodkova, N., Savin, S. and Skalsky, A., 2000. High altitude cusp: Interball observations. Adv. Space Res. 25, pp. 1425–1434. Article | PDF (915 K) | View Record in Scopus | Cited By in Scopus (22)
Onsager, T.G., Scudder, J., Lockwood, M. and Russell, C.T., 2001. Reconnection at the high latitude magnetopause during northward IMF conditions. J. Geophys. Res. 106, pp. 25,467–25,488.
Romanov, V., Savin, S., Klimov, S., Romanov, S., Yermolaev, Yu., Blecki, J. and Wronowski, R., 1999. Magnetic turbulence at the magnetopause: plasma penetration. J. Tech. Phys. (Poland) 40 1, pp. 329–332.
Safrankova, J., Nemecek, Z., Prech, L., Sauvaud, J.-A. and Wing, S., 2001. The structure of the magnetopause layers at magnetospheric flanks. In: Proceedings of COSPAR/ESA, Colloquium.
Sagdeev, R.Z. and Galeev, A.A., 1969. Nonlinear plasma theory. In: , Benjamin, White Plains, N.Y., p. 6.
Sandahl, I., Popielavska, B., Budnick, E.Yu., Fedorov, A., Savin, S., Safrankova, J. and Nemecek, Z., 2000. The cusp as seen from Interball. In: Proceedings of Cluster II Workshop. Multiscale/Multipoint Plasma MeasurementsESA/SP-499, Imperial College, London, pp. 39–45.
Savin, S.P., Romanov, S.A., Fedorov, A.O., Zelenyi, L., Klimov, S.I. et al., 1998. The cusp/magnetosheath interface on May 29, 1996: Interball-1 and Polar observations. Geoph. Res. Lett. 25, pp. 2963–2966. Full Text via CrossRef | View Record in Scopus | Cited By in Scopus (23)
Savin, S.P., Borodkova, N.L., Budnik, E.Yu., Fedorov, A.O., Klimov, S.I. et al., 1998. Interball tail probe measurements in outer cusp and boundary layers. In: Horwitz, J.L., Gallagher, D.L. and Peterson, W.K., Editors, 1998. Geospace Mass and Energy Flow: Results from the International Solar-Terrestrial Physics ProgramGeophysical Monograph 104, American Geophysical Union, Washington, D.C., pp. 25–44.
Savin, S., Zelenyi, L., Budnik, L., Borodkova, N., Fedorov, A. et al., 1998. Manifestations of Boundary Layer Dynamics in Substrom Activity. Multi Spacecraft Study. In: Kokubun, S. and Kamide, Y., Editors, 1998. SUBSTORM-4, ‘Conf. on Substorms-4’Lake Hamana, Japan: March 9–13, 1998, , Terra Scientific Publ. Co., Tokyo, pp. 125–130.
Savin, S., Budnik, E., Nozdrachev, M., Romanov, V. et al., 1999. On the plasma turbulence and transport at the polar cusp outer border. Chekhoslovak J. Phys. 49 4a, pp. 679–693. View Record in Scopus | Cited By in Scopus (15)
Savin, S., Skalsky, A., Romanov, S., Budnick, E., Borodkova, N., Zelenyi, L. et al., 2000. Outer cusp boundary layer: summer/winter assymetry. In: Proceedings of Symposium ‘From solar corona through interplanetary space into magnetosphere and ionosphere’, Kyiv University, Kyiv, pp. 229–232.
Savin, S., Blecki, J., Pissarenko, N., Lutsenko, V., Kirpichev, I. et al., 2002. Accelerated particles from turbulent boundary layer. In: Proc. of Interball/COSPAR Colloquium ‘Acceleration And Heating In The Magnetosphere’ in press .
Savin, S., Maynard, N., Sandahl, I., Kawano, H., Russell, C.T., Romanov, S., Zelenyi, L. et al., 2002. Magnetosheath/Cusp Interface. Ann. Geophys. submitted .
Siscoe, G.L., Erickson, G.M., Sonnerup, B.U.Ö., Maynard, N.C., Siebert, K.D., Weimer, D.R. and White, W.W., 2001. Magnetospheric sash dependence on IMF direction. Geophys. Res. Lett. in press .
Spreiter, J.R. and Briggs, B.R., 1962. Theoretical determination of the form of the boundary of the solar corpuscular stream produced by interaction with the magnetic dipole field of the Earth. J. Geophys. Res. 67, pp. 37–51. Full Text via CrossRef
Zelenyi, L.M. and Milovanov, A.V., 1998. Multiscale magnetic structure of the distant tail: self-consistent fractal approach. In: New Perspectives on the Earth MagnetotailGeophys. Monograph 105, AGU, Washington DC, pp. 321–338.
  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号