首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
航空   3篇
航天   3篇
  2011年   2篇
  2008年   1篇
  2005年   1篇
  1995年   1篇
  1983年   1篇
排序方式: 共有6条查询结果,搜索用时 171 毫秒
1
1.
2.
The National Space Biomedical Research Institute (NSBRI) is supporting the National Aeronautics and Space Administration's (NASA) education mission through a comprehensive Education and Public Outreach Program (EPOP) that communicates the excitement and significance of space biology to schools, families, and lay audiences. The EPOP is comprised of eight academic institutions: Baylor College of Medicine, Massachusetts Institute of Technology, Morehouse School of Medicine, Mount Sinai School of Medicine, Texas A&M University, University of Texas Medical Branch Galveston, Rice University, and the University of Washington. This paper describes the programs and products created by the EPOP to promote space life science education in schools and among the general public. To date, these activities have reached thousands of teachers and students around the US and have been rated very highly.  相似文献   
3.
The Polar Ionospheric X-ray Imaging Experiment (PIXIE)   总被引:2,自引:0,他引:2  
The Polar Ionospheric X-ray Imaging Experiment (PIXIE) is an X-ray multiple-pinhole camera designed to image simultaneously an entire auroral region from high altitudes. It will be mounted on the despun platform of the POLAR spacecraft and will measure the spatial distribution and temporal variation of auroral X-ray emissions in the 2 to 60 keV energy range on the day side of the Earth as well as the night. PIXIE consists of two pinhole cameras integrated into one assembly, each equipped with an adjustable aperture plate that allows an optimum number of nonoverlapping images to be formed in the detector plane at each phase of the satellite's eccentric orbit. The aperture plates also allow the pinhole size to be adjusted so that the experimenter can trade off spatial resolution against instrument sensitivity. In the principal mode of operation, one aperture plate will be positioned for high spatial resolution and the other for high sensitivity. The detectors consist of four stacked multiwire position-sensitive proportional counters, two in each of two separate gas chambers. The front chamber operates in the 2–12 keV energy range and the rear chamber in the 10–60 keV range. All of the energy and position information for each telemetered X-ray event is available on the ground. This enables the experimenter to adjust the exposure timepostfacto so that energy spectra of each X-ray emitting region can be independently accumulated. From these data PIXIE will provide, for the first time, global images of precipitated energetic electron spectra, energy inputs, ionospheric electron densities, and upper atmospheric conductivities.  相似文献   
4.
The structure and composition of comet nuclei are mainly altered during two short phases that are separated by a very long hibernation phase. Early evolution—during and immediately after formation—is the result of heating caused by radioactive decay, the most important source being 26Al. Several studies are reviewed, dealing with evolution throughout this phase, calculated by means of 1-D numerical codes that solve the heat and mass balance equations on a fixed spherically symmetric grid. It is shown that, depending on parameters, the interior may reach temperatures above the melting point of water. The models thus suggest that comets are likely to lose the ices of very volatile species during early evolution; ices of less volatile species are retained in the cold subsurface layer. As the initially amorphous ice is shown to crystallize in the interior, some objects may also lose part of the volatiles trapped in amorphous ice. Generally, the outer layers are far less affected than the inner part, resulting in a stratified composition and altered porosity distribution. The second phase of evolution occurs when comet nuclei are deflected into the inner solar system and is dominated by the effect of solar radiation. Now the outer layers are those mostly affected, undergoing crystallization, loss of volatiles, and significant structural changes. If any part of a comet nucleus should retain its pristine structure and composition, it would be well below the surface and also well above the core.  相似文献   
5.
When the oxygen/hydrogen bipropellant combination was selected for use in the Space Shuttle Main Engine, it became apparent that many advantages may result if the Auxiliary Propulsion System Engines were to use the same propellants. A new ignition system, possessing a dramatically new level of reliability, durability and response, is required because the oxygen/hydrogen combination is not hypergolic and the projected missions will require a very large number of fast-response engine starts.The objective of this program was to obtain basic data for spark torch ignition methods at operating conditions typical of a Space Shuttle Orbiter Auxiliary Propulsion System. The research included ignition analysis and igniter design, fabrication and hot-fire test.Extensive testing of spark torch igniters was performed (chamber pressure, 206.8 N/cm2, 300 psia, nominal) in the Igniter-Only and Igniter-Complete Thruster (thrust, 6672 N, 1500 lbF, nominal) operational modes. Reliable, repeatable ignitions were obtained with spark energies of 1–10 mJ. Hot-fire test results showed there is no effect of back pressure (1.013 × 105 to 1.333 × 10?2 N/m2, 7.60 × 102 to 1 × 10?4 mm Hg) or low temperature (O2, 170 K, 306 R; H2, 107 K, 193 R) on the response of the igniter or the ignition delay of the thruster over the ranges tested. Igniter durability and pulse capability were demonstrated with 150 sec of continuous operation and 1000 consecutive pulses, respectively. Durability was further demonstrated with a series of 2500 Igniter-Complete Thruster ignitions at nominal chamber pressure. No limiting variables were encountered. The hot-fire test results showed the spark torch igniter is capable of meeting fully the typical Space Shuttle Orbiter Auxiliary Propulsion System mission requirements.  相似文献   
6.
Space Exploration educators worldwide are confronting challenges and embracing opportunities to prepare students for the global 21st century workforce. The National Space Biomedical Research Institute (NSBRI), established in 1997 through a NASA competition, is a 12-university consortium dedicated to space life science research and education. NSBRI's Education and Public Outreach Program (EPOP) is advancing the Institute's mission by responding to global educational challenges through activities that: provide teacher professional development; develop curricula that teach students to communicate with their peers across the globe; provide women and minority US populations with greater access to, and awareness of science careers; and promote international science education partnerships.A recent National Research Council (NRC) Space Studies Board Report, America's Future in Space: Aligning the Civil Program with National Needs, acknowledges that “a capable workforce for the 21st century is a key strategic objective for the US space program… (and that) US problems requiring best efforts to understand and resolve…are global in nature and must be addressed through mutual worldwide action”. [1] This sentiment has gained new momentum through a recent National Aeronautics and Space Administration (NASA) report, which recommends that the life of the International Space Station be extended beyond the planned 2016 termination. [2] The two principles of globalization and ISS utility have elevated NSBRI EPOP efforts to design and disseminate science, technology, engineering and mathematics (STEM) educational materials that prepare students for full participation in a globalized, high technology society; promote and provide teacher professional development; create research opportunities for women and underserved populations; and build international educational partnerships.This paper describes select EPOP projects and makes the case for using innovative, emerging information technologies to transfer space exploration knowledge to students, engage educators from across the globe in discourse about science curricula, and foster multimedia collaborations that inform citizens about the benefits of space exploration for life on Earth. Special references are made to educational activities conducted at professional meetings in Austria, Canada, France, China, Greece, Italy, Russia, Scotland and Spain.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号