首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   4篇
  国内免费   1篇
航空   8篇
综合类   1篇
  2022年   1篇
  2021年   1篇
  2019年   3篇
  2017年   1篇
  2016年   2篇
  2012年   1篇
排序方式: 共有9条查询结果,搜索用时 234 毫秒
1
1.
双层壳型冲击/气膜综合流量系数实验研究   总被引:2,自引:1,他引:1  
为了研究新型高效涡轮铸冷叶片内部冷却通道中的流动特性,以铸冷叶片典型结构——双层壳型冲击/气膜复合冷却结构的平壁模型为研究对象,实验研究了该种冷却结构的综合流量系数Cd随冲击雷诺数Red(600~2800),主次流吹风比M(0.7~7),冲击间距比H/d(0.5~1.25),冲击孔和气膜孔间距比P/d(0,3,4)等参数的变化规律。研究结果表明:(1)Cd随着冲击雷诺数Red,吹风比M的增加而增大,在吹风比小于3工况下更为显著;(2)在相同的气动参数条件下,综合流量系数Cd随着孔排距比P/d的增加而增大,随着冲击间距比H/d的减小而显著降低。  相似文献   
2.
反旋进气混合式减涡结构流动特性数值计算   总被引:3,自引:2,他引:1  
提出了一种将反旋进气孔与减涡管相结合的混合式减涡器,数值研究了其减阻引气效果,分析了旋转雷诺数、无量纲入口质量流量对内部流场结构和压力损失的影响。研究发现:在混合式减涡器引气结构中,静压沿径向平缓降低,在周向分布均匀;随着无量纲入口质量流量或旋转雷诺数的增加,引气结构总压降呈现单调上升的趋势,其中在高旋转雷诺数、低无量纲质量流量工况下具有突出的减阻性能,其对应的湍流参数为0.106 4~0.324 5。相比于简单盘腔,反旋进气孔式及管式减涡器的压力损失分别降低62.5%、60.5%,混合式减涡器可降低80.4%,体现出良好的减阻引气效果。   相似文献   
3.
双层涡轮叶片异形冷却单元内换热特性实验研究   总被引:1,自引:1,他引:0  
基于实际加工成型的双层涡轮导向器叶片内部特征,模化出操场形和椭圆形截面冷却结构。针对其内部应用的冲击/气膜复合冷却形式,实验研究了冲击靶面的换热特性,重点分析了通道截面形状不同时,进口Re数、气膜出流以及冲击孔和气膜孔的相对位置对冲击靶面换热特性的影响。研究中发现通道内部局部Nu数呈中心对称的波浪形分布,并且气膜孔壁面上游的换热效果整体低于下游,只有在靠近气膜孔中心局部区域的换热系数较高。随着进气Re数增加,换热效果逐步增强 。实验数据表明,截面形状不同的冷却通道的换热特性规律不同。对于操场跑道形冷却通道,冲击孔和气膜孔顺排时冷却效果较好;而椭圆形冷却通道中,冲击孔和气膜孔错排时冷却效果较好。  相似文献   
4.
赵陈伟  毛军逵  屠泽灿  邱鹏霖 《航空学报》2021,42(6):24126-024126
以陶瓷基复合材料(CMC)为代表的纤维增韧复合材料具有耐高温、高强度、低密度等特点,在航空燃气涡轮发动机、火箭发动机等动力装置中逐步得到工程应用。CMC材料因其自身特殊的结构特点,使得其导热系数呈现出明显的各向异性,进而导致传统基于均质金属材料的热分析方法将不再适用于CMC热端部件。总结了单向纤维、2/2.5维编织纤维、3维编织纤维等典型纤维增韧CMC材料导热系数预测方法的研究进展和CMC热端部件热分析方法的研究现状。综合来看,如何在热分析中高效引入CMC材料微观尺度信息,建立起精度高且工程可应用的CMC热端部件跨尺度热分析方法是目前亟需突破的技术难题。面向未来CMC热端部件的工程应用,基于三维微观结构特征重构的热分析模型是建立CMC热端部件高精度热分析方法的关键,同时热分析还需要同制造工艺、力学行为分析等进一步紧密结合。  相似文献   
5.
叶尖间隙控制系统中横流效应的试验研究   总被引:1,自引:1,他引:0       下载免费PDF全文
为了研究带初始横流冷却管式阵列射流冲击换热特性,以基于机匣热变形控制的叶尖间隙控制系统为对象,试验研究了机匣外置多排冷却空气管结构中,初始横流雷诺数(0~8×104)对射流冲击机匣表面换热特性的影响。研究中发现,相比横流雷诺数,冲击雷诺数对靶面平均换热系数的影响更大,平均换热系数随着冲击雷诺数的增加显著提高。初始横流的加入,冲击滞止区发生了沿初始横流流向的偏移,削弱了靶面的冲击换热效果,局部换热数的峰值呈现出先减小后增加的规律。研究结果表明,当横流雷诺数超过4×104后,冲击滞止区下游出现一个"鱼尾形"的换热强化区域,且随着横流雷诺数增加,该鱼尾状区域范围逐步增大,靶面换热效果得到一定程度的提升。冲击孔间距越小,靶面局部和平均换热系数越大,此时横流的影响相对较小,在本文研究参数范围内,冲击孔间距比为4时,会获得更好的换热效果。  相似文献   
6.
针对编织结构陶瓷基复合材料(Ceramic matrix composite,CMC)中基体、纤维束和界面层等组分的不同传热特征,以及考虑到界面层结构极薄的尺寸特征,探究了界面层及其在细观结构代表单元中的引入方式对编织结构CMC材料内部热量传输特征和各向异性导热系数的影响。研究中对比分析了不考虑界面层、含隐式界面层和含显式界面层等三种代表性体积单元模型的温度场、热流密度场及各向异性等效导热系数,获取了界面层导热系数对CMC材料整体导热系数的影响规律。研究结果表明:编织结构CMC材料内部温度场存在明显的不均匀性,不同模型计算获取的热流密度场具有明显区别。同时基于三个模型获取的各向异性导热系数也具有较大差异,显示界面层方法预估精度较高。此外,随着界面层导热系数增加,CMC材料整体各向异性导热系数明显增加,其对水平经纱Y方向上等效导热系数的影响最大。  相似文献   
7.
以T300碳纤维/环氧树脂基单向复合材料为例,考虑纤维周围间隙缺陷的影响,建立了基于微观图像识别的等效导热系数预估方法.首先利用图像识别技术处理材料微观电镜照片,然后依据纤维体积分数稳定性判据应用几何重构技术建立了代表性单元,并通过在代表性单元(RVE)内部交界面处添加接触热阻的方法引入间隙缺陷的影响,最终利用有限元方法模拟得到等效导热系数(ETC).研究发现:间隙的位置对等效导热系数影响微弱;随着间隙缺陷占比和厚度的增加,等效导热系数显著降低;间隙缺陷占比大于0.8,无量纲间隙缺陷厚度小于0.15时,单向纤维增韧复合材料的等效导热系数受间隙影响最突出;相对于纤维和基体理想接触的情况,考虑间隙缺陷后,等效导热系数最大降幅可达52.1%.   相似文献   
8.
2.5D编织结构复合材料温度场特征研究   总被引:2,自引:2,他引:0       下载免费PDF全文
吴昕宇  赵晓  屠泽灿  毛军逵  贺振宗 《推进技术》2019,40(11):2606-2617
考虑到编织结构陶瓷基复合材料(CMC)在涡轮叶片等航空发动机高温部件应用时,材料内部编织结构特征会导致高温部件的温度场存在波动性。为了研究复合材料温度场的波动特征,以2.5D编织结构复合材料为例,分别建立了基于等效导热系数的均匀化平板模型和基于材料全尺寸细观编织结构的平板模型,计算对比了两种平板模型的温度场分布及内部热量传输特征,同时探究了材料内部编织结构的角度、纤维束轴向与径向导热系数比、纤维束与基体导热系数比等材料结构特征参数和热物性特征参数对材料表面温度波动的影响规律,并开展了编织结构平板的温度场测试实验。研究结果表明:与基于等效导热系数计算得到的平板温度场相比,基于全尺寸编织结构平板模型得到的温度场存在明显的波动特征,当平板内部平均温度梯度为25383K/m时,表面温度波动幅值达到12.41K,表面最高温度由906.96K增加到911.60K,并且在平板内部热量的传输方向沿着纱线发生明显的偏转。同时,随着纱线编织角度的增加,材料表面温度波动幅值下降,但表面的高温区域增加,沿着经纱轴向的温度波动频次增加。随着纤维束轴径向导热系数比的增加,材料表面的高温区域基本不变,温度波动幅值小幅下降,均匀性增强;随着纤维束与基体导热系数比的增加,材料表面的高温区域增加,温度波动幅值降幅较大,均匀性得到较大提高。在本文的研究范围内,当边界温度达到1600K时,基于等效导热系数的方法无法准确地预估复合材料的温度场。  相似文献   
9.
考虑陶瓷基复合材料等纤维增韧复合材料导热系数的各向异性及分散性,建立了基于概率统计的陶瓷基复合材料涡轮叶片热分析方法。研究中以Mark Ⅱ涡轮叶片冷却结构为例,综合利用有限元方法和蒙特卡洛方法,分析了应用陶瓷基复合材料后的温度场均值和波动特性。计算中将导热系数作为随机输入参数,分析了导热系数各向异性及其分散度对叶片前缘滞止点温度、尾缘温度以及高温区域(T>900K)面积的影响。计算中发现在本文的计算工况下,考虑导热系数存在正态波动情况时,叶片前缘滞止点、尾缘温度波动也满足正态分布。前缘滞止点温度在导热系数变异系数为01,导热系数比为2时其温度波动最大,相比12731K的均温,有16%的概率超温913K。尾缘温度在导热系数变异系数为01,导热系数比为10时波动最大,有16%的概率超过均值11529K达527K。计算结果表明:导热系数分散度所带来的波动,会导致叶片内部高温关注区域(T>900K)的面积增大,并且高温关注区域相对增加量ΔShot随导热系数变异系数α的增加而增加。计算结果表明,高温关注区域相对增加量最大发生在导热系数比为2,变异系数为0.1时,此时ΔShot=4.8%。   相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号