首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33篇
  免费   0篇
航空   16篇
航天技术   7篇
航天   10篇
  2018年   1篇
  2016年   4篇
  2014年   2篇
  2013年   4篇
  2012年   2篇
  2011年   2篇
  2010年   2篇
  2009年   2篇
  2008年   1篇
  2007年   4篇
  2006年   1篇
  2002年   2篇
  1999年   2篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
排序方式: 共有33条查询结果,搜索用时 390 毫秒
1.
The fastest pulsar and the slowest nova; the oldest galaxies and the youngest stars; the weirdest life forms and the commonest dwarfs; the highest energy particles and the lowest energy photons. These were some of the extremes of Astrophysics 2006. We attempt also to bring you updates on things of which there is currently only one (habitable planets, the Sun, and the Universe) and others of which there are always many, like meteors and molecules, black holes and binaries.  相似文献   
2.
In the 36 years between June 1965 and February 2001, the US human space flight program has conducted 100 spacewalks, or extravehicular activities (EVAs), as NASA officially calls them. EVA occurs when astronauts wearing spacesuits travel outside their protective spacecraft to perform tasks in the space vacuum environment. US EVA started with pioneering feasibility tests during the Gemini Program. The Apollo Program required sending astronauts to the moon and performing EVA to explore the lunar surface. EVA supported scientific mission objectives of the Skylab program, but may be best remembered for repairing launch damage to the vehicle and thus saving the program. EVA capability on Shuttle was initially planned to be a kit that could be flown at will, and was primarily intended for coping with vehicle return emergencies. The Skylab emergency and the pivotal role of EVA in salvaging that program quickly promoted Shuttle EVA to an essential element for achieving mission objectives, including retrieving satellites and developing techniques to assemble and maintain the International Space Station (ISS). Now, EVA is supporting assembly of ISS. This paper highlights development of US EVA capability within the context of the overarching mission objectives of the US human space flight program.  相似文献   
3.
To meet the significant increase in EVA demand to support assembly and operations of the International Space Station (ISS), NASA and industry have improved the current Shuttle Extravehicular Mobility Unit (EMU), or "space suit", configuration to meet the unique and specific requirements of an orbital-based system. The current Shuttle EMU was designed to be maintained and serviced on the ground between frequent Shuttle flights. ISS will require the EMUs to meet increased EVAs out of the Shuttle Orbiter and to remain on orbit for up to 180 days without need for regular return to Earth for scheduled maintenance or refurbishment. Ongoing Shuttle EMU improvements have increased reliability, operational life and performance while minimizing ground and on-orbit maintenance cost and expendable inventory. Modifications to both the anthropomorphic mobility elements of the Space Suit Assembly (SSA) as well as to the Primary Life Support System (PLSS) are identified and discussed. This paper also addresses the status of on-going Shuttle EMU improvements and summarizes the approach for increasing interoperability of the U.S. and Russian space suits to be utilized aboard the ISS.  相似文献   
4.
DORIS is one of the four space-geodetic techniques participating in the Global Geodetic Observing System (GGOS), particularly to maintain and disseminate the Terrestrial Reference Frame as determined by International Earth rotation and Reference frame Service (IERS). A few years ago, under the umbrella of the International Association of Geodesy, a DORIS International Service (IDS) was created in order to foster international cooperation and to provide new scientific products. This paper addresses the organizational aspects of the IDS and presents some recent DORIS scientific results. It is for the first time that, in preparation of the ITRF2008, seven Analysis Centers (AC’s) contributed to derive long-term time series of DORIS stations positions. These solutions were then combined into a homogeneous time series IDS-2 for which a precision of less than 10 mm was obtained. Orbit comparisons between the various AC’s showed an excellent agreement in the radial component, both for the SPOT satellites (e.g. 0.5–2.1 cm RMS for SPOT-2) and Envisat (0.9–2.1 cm RMS), using different software packages, models, corrections and analysis strategies. There is now a wide international participation within IDS that should lead to future improvements in DORIS analysis strategies and DORIS-derived geodetic products.  相似文献   
5.
Self-organization is a property of dissipative nonlinear processes that are governed by a global driving force and a local positive feedback mechanism, which creates regular geometric and/or temporal patterns, and decreases the entropy locally, in contrast to random processes. Here we investigate for the first time a comprehensive number of (17) self-organization processes that operate in planetary physics, solar physics, stellar physics, galactic physics, and cosmology. Self-organizing systems create spontaneous “order out of randomness”, during the evolution from an initially disordered system to an ordered quasi-stationary system, mostly by quasi-periodic limit-cycle dynamics, but also by harmonic (mechanical or gyromagnetic) resonances. The global driving force can be due to gravity, electromagnetic forces, mechanical forces (e.g., rotation or differential rotation), thermal pressure, or acceleration of nonthermal particles, while the positive feedback mechanism is often an instability, such as the magneto-rotational (Balbus-Hawley) instability, the convective (Rayleigh-Bénard) instability, turbulence, vortex attraction, magnetic reconnection, plasma condensation, or a loss-cone instability. Physical models of astrophysical self-organization processes require hydrodynamic, magneto-hydrodynamic (MHD), plasma, or N-body simulations. Analytical formulations of self-organizing systems generally involve coupled differential equations with limit-cycle solutions of the Lotka-Volterra or Hopf-bifurcation type.  相似文献   
6.
In today's fiscally constrained environment, it can be expected that systems designed for one space program will increasingly be used to support other programs. The example of the U.S. extravehicular mobility unit (EMU), designed for use with the Space Shuttle, and now part of the baseline for the International Space Station (ISS) program, illustrates the adaption process. Certifying the Shuttle's EMU for use aboard ISS requires addressing three fundamental issues: Identifying new ISS requirements to be imposed on the EMU. Extending Shuttle's EMU on-orbit service interval to meet ISS's longer missions. Certifying Shuttle's EMU to meet new environments unique to ISS. Upon completion of the certification process, Shuttle's EMU will meet all requirements for supporting both the Shuttle and ISS program. This paper discusses the processes for addressing these issues and progress to date in achieving resolution.  相似文献   
7.
On November 1, 2011, at 05:58 local time, the Chinese spaceship Shenzhou-8 was launched for a 17-day mission with a Long March rocket from the Jiuquan Satellite Launch Center in the Mongolia desert. On board was the German SIMBOX (Science in Microgravity Box) experimental facility containing 17 bio-medical experiments, which were conducted by German researchers together with their Chinese colleagues. It was the first time that China cooperated with a European nation in the scientific utilization of Shenzhou – the core element of China's human spaceflight programme.  相似文献   
8.
Orbital robotics focuses on a variety of applications, as e.g. inspection and repair activities, spacecraft construction or orbit corrections. On-Orbit Servicing (OOS) activities have to be closely monitored by operators on ground. A direct contact to the spacecraft in Low Earth Orbit (LEO) is limiting the operational time of the robotic application. Therefore, geostationary satellites are desirable to relay the OOS signals and extend the servicing time window. A geostationary satellite in the communication chain not only introduces additional boundary conditions to the mission but also increases the time delay in the system. The latter is not very critical if the servicer satellite is operating autonomously. However, if the servicer is operating in a supervised control regime with a human in the loop, the increased time delay will have an impact on the operator’s task performance.  相似文献   
9.
Abstract

Many neuro-imaging studies have provided evidence that the parietal cortex plays a key role in reasoning based on mental models, which are supposed to be of abstract spatial nature. However, these studies have also shown concurrent activation in vision-related cortical areas which have often been interpreted as evidence for the role of visual mental imagery in reasoning. The aim of the paper is to resolve the inconsistencies in the previous literature on reasoning and imagery and to develop a neurally and cognitively plausible theory of human relational reasoning. The main assumption is that visual brain areas are only involved if the problem information is easy to visualize and when this information must be processed and maintained in visual working memory. A regular reasoning process, however, does not involve visual images but more abstract spatial representations—spatial mental models—held in parietal cortices. Only these spatial representations are crucial for the genuine reasoning processes.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号