首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   65356篇
  免费   12056篇
  国内免费   10819篇
航空   46931篇
航天技术   20634篇
综合类   4172篇
航天   16494篇
  2023年   1213篇
  2022年   2235篇
  2021年   3064篇
  2020年   3095篇
  2019年   2625篇
  2018年   2940篇
  2017年   1819篇
  2016年   2639篇
  2015年   2579篇
  2014年   4459篇
  2013年   5272篇
  2012年   6299篇
  2011年   6660篇
  2010年   4804篇
  2009年   3937篇
  2008年   4033篇
  2007年   3240篇
  2006年   2862篇
  2005年   2377篇
  2004年   1815篇
  2003年   1634篇
  2002年   1336篇
  2001年   1763篇
  2000年   1204篇
  1999年   1335篇
  1998年   1111篇
  1997年   825篇
  1996年   863篇
  1995年   832篇
  1994年   1033篇
  1993年   625篇
  1992年   732篇
  1991年   288篇
  1990年   247篇
  1989年   529篇
  1988年   249篇
  1987年   257篇
  1986年   239篇
  1985年   691篇
  1984年   483篇
  1983年   431篇
  1982年   464篇
  1981年   612篇
  1980年   211篇
  1975年   209篇
  1974年   164篇
  1973年   158篇
  1972年   190篇
  1969年   152篇
  1967年   151篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
《中国航空学报》2020,33(11):2930-2945
Unmanned Aerial Vehicles (UAVs) are useful in dangerous and dynamic tasks such as search-and-rescue, forest surveillance, and anti-terrorist operations. These tasks can be solved better through the collaboration of multiple UAVs under human supervision. However, it is still difficult for human to monitor, understand, predict and control the behaviors of the UAVs due to the task complexity as well as the black-box machine learning and planning algorithms being used. In this paper, the coactive design method is adopted to analyze the cognitive capabilities required for the tasks and design the interdependencies among the heterogeneous teammates of UAVs or human for coherent collaboration. Then, an agent-based task planner is proposed to automatically decompose a complex task into a sequence of explainable subtasks under constrains of resources, execution time, social rules and costs. Besides, a deep reinforcement learning approach is designed for the UAVs to learn optimal policies of a flocking behavior and a path planner that are easy for the human operator to understand and control. Finally, a mixed-initiative action selection mechanism is used to evaluate the learned policies as well as the human’s decisions. Experimental results demonstrate the effectiveness of the proposed methods.  相似文献   
992.
《中国航空学报》2020,33(12):3027-3038
Hypersonic and high-enthalpy wind tunnels and their measurement techniques are the cornerstone of the hypersonic flight era that is a dream for human beings to fly faster, higher and further. The great progress has been achieved during the recent years and their critical technologies are still in an urgent need for further development. There are at least four kinds of hypersonic and high-enthalpy wind tunnels that are widely applied over the world and can be classified according to their operation modes. These wind tunnels are named as air-directly-heated hypersonic wind tunnel, light-gas-heated shock tunnel, free-piston-driven shock tunnel and detonation-driven shock tunnel, respectively. The critical technologies for developing the wind tunnels are introduced in this paper, and their merits and weakness are discussed based on wind tunnel performance evaluation. Measurement techniques especially developed for high-enthalpy flows are a part of the hypersonic wind tunnel technology because the flow is a chemically reacting gas motion and its diagnosis needs specially designed instruments. Three kinds of the measurement techniques considered to be of primary importance are introduced here, including the heat flux sensor, the aerodynamic balance, and optical diagnosis techniques. The techniques are developed usually for conventional wind tunnels, but further improved for hypersonic and high-enthalpy tunnels. The hypersonic ground test facilities have provided us with most of valuable experimental data on high-enthalpy flows and will play a more important role in hypersonic research area in the future. Therefore, several prospects for developing hypersonic and high-enthalpy wind tunnels are presented from our point of view.  相似文献   
993.
带非线性支撑的转子有限元模型求解方法   总被引:1,自引:1,他引:0  
韩兵兵  丁千 《航空动力学报》2020,35(12):2616-2625
用数值方法研究了非线性支撑的柔性转子系统的动学行为,提出了一种将有限元与非线性支撑结合的模型和求解方法。利用有限元法(FEM)构建转轴和转盘部分的模型,通过矩阵进行组合;利用离散元方法对包含滚动轴承和挤压油膜阻尼器(SFD)的支撑部分进行建模,此部分包含4个单元,分别为轴承内圈、外圈、SFD内圈和支撑鼠笼。有限元部分和离散元部分通过轴端节点相连,仿真过程中轴端位移传递给非线性支撑部分,支撑部分通过位移计算得到的非线性力反过来作用于有限元转子轴端部分。为了耦合求解有限元转子和非线性支撑组成的数学模型,提出了一种综合的迭代求解方法,克服传统的有限元求解方法对轴端隐性非线性支撑的求解局限性。由于转轴部分采用了Timoshenko梁单元建模,对比与简单转子模型,可以考虑陀螺力矩和轴的柔性特征,更能体现非线性支撑对振动真实影响。在建立的20个轴单元的有限元转子模型中,非线性响应更多体现在靠近非线性支撑的节点1和节点21处,响应频谱中靠近轴端的节点能体现出滚动轴承的2倍和3倍变柔振动频率。  相似文献   
994.
基于任意角度压缩感知(CS)方法分析了传感器安装角度偏差对风扇/压气机周向模态识别重构的影响,设计了一套自适应角度优化程序修正重构误差。利用数值试验探究了传感器角度偏差和数量对周向模态重构结果的影响,研究表明:当角度偏差等级为2.5%时,平均重构误差达到10%以上,若保证重构误差基本不变,将传感器数量从7个增加至25个,仅可以将角度偏差等级放宽至4%。而采用小生境微种群遗传算法进行自适应角度优化,在20 dB信噪比下,通过自适应角度优化可将角度偏差等级从2.5%放宽至10%,降低了传感器安装的精度要求。成功优化了一款冷却风扇在前三阶叶片通过频率下的主要周向声模态重构幅值。自适应角度优化算法有效提升了基于压缩感知的风扇/压气机周向模态重构可靠性。  相似文献   
995.
《中国航空学报》2020,33(2):589-597
In this paper, the spray characteristics of a double-swirl low-emission combustor are analyzed by using Particle Imaging Velocimetry (PIV) and Planar Laser Induced Fluorescence (PLIF) technologies in an optical three-sector combustor test rig. Interactions between sectors and the influence of main stage swirl intensity on spray structure are explained. The results illustrate that the swirl intensity has great effect on the flow field and spray structure. The spray cone angle is bigger when the swirl number is 0.7, 0.9 than that when the swirl number is 0.5. The fuel distribution zone is larger and the distribution is more uniform when the swirl number is 0.5. The fuel concentration in the center area of the center plane of side sector (Plane 5) is larger than that of the center plane of middle sector (Plane 1). The spray cone angle in Plane 5 is larger than that in Plane 1. The width of spray cone becomes larger with the increase of Fuel–Air Ratio (FAR), whereas the spray cone angle under different fuel–air ratios are absolutely the same. The results of the mechanism of spray organization in this study can be used to support the design of new low-emission combustor.  相似文献   
996.
《中国航空学报》2020,33(1):161-175
Implementation of an opposing jet in design of a hypersonic blunt body significantly modifies the external flowfield and yields a considerable reduction in the aerodynamic drag. This study aims to investigate the effects of flowfield modeling parameters of injection and freestream on the flow structure and aerodynamics of a blunt body with an opposing jet in hypersonic flow. Reynolds-Averaged Navier-Stokes (RANS) equations with a Shear Stress Transport (SST) turbulence model are employed to simulate the intricate jet flow interaction. Through utilizing a Non-Intrusive Polynomial Chaos (NIPC) method to construct surrogates, a functional relation is established between input modeling parameters and output flowfield and aerodynamic quantities in concern. Sobol indices in sensitivity analysis are introduced to represent the relative contribution of each parameter. It is found that variations in modeling parameters produce large variations in the flow structure and aerodynamics. The jet-to-freestream total-pressure ratio, jet Mach number, and freestream Mach number are the major contributors to variation in surface pressure, demonstrating an evident location-dependent behavior. The penetration length of injection, reattachment angle of the shear layer, and aerodynamic drag are also most sensitive to the three crucial parameters above. In comparison, the contributions of freestream temperature, freestream density, and jet total temperature are nearly negligible.  相似文献   
997.
《中国航空学报》2020,33(1):219-226
The air transportation system has a critical impact on the global economy. While the system reliability is essential for the operational management of air traffic, it remains challenging to understand the network reliability of the air transportation system. This paper focuses on how the global air traffic is integrated from local scale along with operational time. The integration process of air traffic into a temporally connected network is viewed as percolation process by increasing the integration time constantly. The critical integration time TP which is found during the integration process can measure the global reliability of air traffic. The critical links at TP are also identified, the delay of which will influence the global integration of the airport network. These findings may provide insights on the reliability management for the temporal airport network.  相似文献   
998.
《中国航空学报》2020,33(2):501-507
Based on the similarity of separation time, a similarity law optimization method for high-speed weapon delivery test is derived. The typical separation state under wind load is simulated by the numerical method. The real separation data of aircraft, separation data of previous test methods, separation data of ideal wind tunnel test of previous methods, and simulation data of the proposed optimization method are obtained. A comparison of the data shows that the method proposed can improve the performance of tracking. Similarity law optimization starts with the development of motion equations and dynamic equations in the windless state to address the problems of mismatching between vertical and horizontal displacement, and to address the problems of separation trajectory distortion caused by insufficient gravity acceleration of the scaling model of existing light model. The ejection velocity of the model is taken as a factor/vector, and is adjusted reasonably to compensate the linear displacement insufficiency caused by the insufficient vertical acceleration of the light model method, so as to ensure the matching of the vertical and horizontal displacement of the projectile, and to improve the consistency between the test results of high-speed projection and the actual separation trajectory. The optimized similarity law is applicable to many existing free-throwing modes of high-speed wind tunnels. The optimized similarity law is not affected by the ejection velocity and hanging mode of the projectile. The optimized similarity law is suitable not only for the launching of the buried ammunition compartment and external stores, but also for the test design of projectile launching and gravity separation.  相似文献   
999.
《中国航空学报》2020,33(6):1799-1811
The bent double-ridged rectangular tube (DRRT) with high forming quality is helpful to improve the microwave transmission accuracy. For reducing the cross-sectional deformation in the H-typed bending process, in addition to using rigid mandrel to support the inside of tube, ridge groove fillers are also added to restrict the deformation of ridge grooves. Because of the change of stress and strain state of bent tube in bending, rigid mandrel retracting and specially twice-springback stages, and the springback of fillers, the cross-sectional deformation of tube in each stage may be different. Therefore, based on the ABAQUS platform, the finite element models (FEM) for H-typed bending, mandrel retracting and twice-springback stages of H96 DRRT with fillers were established and validated. It is found that, for the height and width deformation of tube and spacing deformation of ridge grooves, retraction of mandrel can make the distribution of these deformations more uniform along the bending direction. The first springback can reduce these deformations significantly, which should be emphasized. But the second springback only increases them by less amount, which can be ignored. The smaller height deformation of ridge groove and filler can be neglected.  相似文献   
1000.
《中国航空学报》2020,33(6):1824-1835
It is imperative to develop multifunctional erosion and corrosion resistant coatings for compressor blades of aircraft engines in harsh environment. PVD (Physical Vapor Deposition) technology has the advances in processing erosion-resistant coatings; however, the performance of PVD coatings to combat corrosion depends on various coating defects. Determining and comparing the corrosion performances of PVD TiN/Ti coating and uncoated TC4 alloy was the main objective of present work. The 960 h salt spray corrosion and 116 h hot corrosion tests were conducted to simulate the grounding and working environments of the aircraft compressors. The corrosion mechanisms due to the coating defects such as pinhole, columnar boundary and large grain were analyzed based on the OM, Confocal microscope, electrochemical measurements, SEM, XRD and EDS results. Owing to the disordered state associated with the columnar boundary and the coating defect, nitrogen could be easily replaced by oxygen in the hot corrosion process, these structures were channels for fast diffusion of oxygen. Moreover, the Gibbs energy changes of Ti oxidation and TiN oxidation were thermodynamically calculated according to the working condition of aircraft compressors, and considerable research effort was focused on mapping out the phase diagram of Ti, TiN and high pressure gases. The findings of this research can provide insights into developing multifunctional coatings for future aircraft engines.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号