首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Sensitivity analysis of flowfield modeling parameters upon the flow structure and aerodynamics of an opposing jet over a hypersonic blunt body
Institution:Laboratory of Fundamental Science on Ergonomics and Environmental Control, School of Aeronautic Science and Engineering, Beihang University, Beijing 100083, China
Abstract:Implementation of an opposing jet in design of a hypersonic blunt body significantly modifies the external flowfield and yields a considerable reduction in the aerodynamic drag. This study aims to investigate the effects of flowfield modeling parameters of injection and freestream on the flow structure and aerodynamics of a blunt body with an opposing jet in hypersonic flow. Reynolds-Averaged Navier-Stokes (RANS) equations with a Shear Stress Transport (SST) turbulence model are employed to simulate the intricate jet flow interaction. Through utilizing a Non-Intrusive Polynomial Chaos (NIPC) method to construct surrogates, a functional relation is established between input modeling parameters and output flowfield and aerodynamic quantities in concern. Sobol indices in sensitivity analysis are introduced to represent the relative contribution of each parameter. It is found that variations in modeling parameters produce large variations in the flow structure and aerodynamics. The jet-to-freestream total-pressure ratio, jet Mach number, and freestream Mach number are the major contributors to variation in surface pressure, demonstrating an evident location-dependent behavior. The penetration length of injection, reattachment angle of the shear layer, and aerodynamic drag are also most sensitive to the three crucial parameters above. In comparison, the contributions of freestream temperature, freestream density, and jet total temperature are nearly negligible.
Keywords:Aerodynamics  Flow structure  Hypersonic flow  Opposing jet  Sensitivity analysis  Surrogate model
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号