首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   64篇
  免费   18篇
  国内免费   19篇
航空   54篇
航天技术   17篇
综合类   11篇
航天   19篇
  2023年   1篇
  2022年   1篇
  2021年   3篇
  2020年   3篇
  2019年   3篇
  2018年   3篇
  2017年   3篇
  2016年   5篇
  2015年   2篇
  2014年   6篇
  2013年   4篇
  2012年   2篇
  2011年   2篇
  2010年   4篇
  2009年   6篇
  2008年   5篇
  2007年   8篇
  2006年   7篇
  2005年   3篇
  2004年   2篇
  2003年   2篇
  2002年   2篇
  2001年   3篇
  2000年   3篇
  1998年   4篇
  1997年   2篇
  1996年   4篇
  1995年   2篇
  1994年   3篇
  1992年   2篇
  1991年   1篇
排序方式: 共有101条查询结果,搜索用时 15 毫秒
71.
某型飞机前风挡玻璃在压制成型过程中存在折光和布纹较重的质量问题,造成航空有机玻璃成型合格率低。为改善航空有机玻璃成型质量,提高航空有机玻璃成型合格率,通过对航空有机玻璃产生折光和布纹较重质量问题进行原因分析和试压对比,对该型飞机前风挡玻璃压制成型工艺进行改进。  相似文献   
72.
吴晓 《强度与环境》2010,37(4):7-12
由于玻璃面板是典型的双模量材料板,所以应该采用双模量弹性理论研究玻璃面板在侧向力作用下的大位移问题。玻璃面板在侧向力作用下发生变形时,会形成各向同性的拉伸区和压缩区。因此,可把玻璃面板看成两种各向同性材料组成的层合板,采用双模量弹性理论建立了玻璃面板在侧向力作用下的静力平衡方程,利用静力平衡方程确定了玻璃面板的中性面位置。在此基础上,采用能量法研究了玻璃面板在侧向力作用下大位移问题,把能量法的计算结果与有限元计算结果进行了比较,验证了能量法的计算结果是可靠的。算例分析表明,玻璃面板拉压弹性模量相差较大,其挠度计算不宜采用相同弹性模量经典弹性理论,而应该采用双模量弹性理论。  相似文献   
73.
飞机座舱复合玻璃电磁性能和透光性能研究   总被引:1,自引:0,他引:1  
 研究了电磁性能 ,如电磁波后向散射功率、吸收功率以及反射功率与透明导电膜的内在关系 ;研究透光性能 ,如光学膜系的优化设计等。提出了透明导电膜与多层玻璃合理组合以提高电磁性能 ;薄金属膜与多层光学膜合理匹配以提高透光率。采用溅射和蒸发镀膜方法分别实现了上述优化设计的光学膜系结构 ,并与多层玻璃合理层合后 ,斜入射电磁后向散射功率下降 1 0 d B,透光率可达到 77%。  相似文献   
74.
通过重量变化、力学性能测试以及 SEM断口分析对实验室制备的连续玻璃纤维增强尼龙 (GF/PA-66)在酸、碱、汽油、机油、丙酮等介质中的行为进行了探讨 ,发现 GF/PA-66具有良好的耐油性 ,而酸、碱对其性能影响较大 ,极性介质丙酮对其性能也有一定影响  相似文献   
75.
The first experiments on hardening metals by laserpeening induced residual compressive stress in the sur-face of metals for improving their resistance to cracking,stress corrosion and fatigue took place more than 30years ago. However, only today, with the development ofhigh-intensity pulse repetitive rate lasers, this methodstarts to compete to traditional peening, which use influ-ence of small metal balls.Laser peening uses pulses with high intensity 109 ̄1010 W/cm2 [1]. The laser energy abso…  相似文献   
76.
两种增强泡沫塑料静动态力学性能的比较   总被引:2,自引:0,他引:2  
通过静、动态压缩实验对两种增强聚氨酯泡沫塑料的压缩力学性能进行了研究,分析了两种材料应力-应变曲线的特点,并比较它们的应变率敏感性和动态加载时的能量吸收特性,实验结果表明:玻璃纤维束增强聚氨酯泡沫塑料具有不同于单丝玻璃纤维增强泡沫塑料的力学性能和变形破坏机制,单丝玻璃纤维增强泡沫塑料具有较好的增强效果。  相似文献   
77.
根据载人航天器热钢化舷窗玻璃中应力分布的特点,导出了钢化玻璃应力强度因子的计算模型,并分析了玻璃热钢化的强化特点。通过该模型,对钢化程度、玻璃厚度以及裂纹尺寸对玻璃强度和裂纹扩展的影响进行了讨论。指出在相同的钢化程度下,热钢化玻璃的断裂应力随玻璃厚度的增加而提高,而非钢化玻璃的断裂应力并不受玻璃厚度的影响。还针对钢化玻璃临界应力强度因子问题进行了讨论,指出由于KIC+Kr不是材料的物性参数,不能作为钢化玻璃临界应力强度因子。  相似文献   
78.
 研究了净化Ni_(75)B_(17)Si_(8)合金液的方法以及净化对非晶形成能力的影响,通过净化工艺消除合金液内的异质质点可提高合金液的非晶形成能力;釆用净化和急冷相结合的工艺制备出了20×10×0.5(mm~3)的Ni-(75)B_(17)Si_(8)非晶合金试样。  相似文献   
79.
BaO-La2O3-B2O3 (BLB) glass, suitable to be used as a sealing between metals, was chosen to be the binder in preparing glass coats on the Ti-alloy substrate. The SiCN nano-powder was introduced as the filler for the absorbing coat because it is considered to be a good high temperature absorber. The effect of the coating temperature and coating time on the tensile strength of the glass coat was investigated and the proper coating parameters to get good mechanical properties were determined. In addition, the effects of the SiCN content on the tensile strength of the absorbing coat were also discussed. Results show that it is possible to prepare the glass coat using the BLB glass as a binder. That the coat formed at 730℃ for 30 min has the best tensile strength witnesses 730 ℃, 30 min to be the proper parameter to prepare the glass coat. The BLB glass coat without SiCN powder possesses good tensile strength and the introduction of the SiCN absorber into the glass coat will lower the tensile strength. As the SiCN content increases, the tensile strength of the absorbing coat decreases, which could be attributed to the aggregation of SiCN in the coats.  相似文献   
80.
研究了几种热塑性聚酰亚胺泡沫的动态热力学性能和热失重性能。动态黏弹性分析表明,聚酰亚胺泡沫单体刚性越强,自制纯聚酰亚胺泡沫的Tg越高,所研究的几种热塑性聚酰亚胺泡沫的Tg相差达55℃;与TEEK系列相比,自制泡沫的Tg稍高;加入玻璃微珠和碳纳米管(CNT)对泡沫的Tg影响不大,加入30%(质量分数)玻璃微珠Tg只提高6℃,加入5%(质量分数)CNTTg只提高5℃。热失重分析表明,聚酰亚胺泡沫单体刚性越强,其起始分解温度越高,热失重5%时的起始分解温度达550℃;加入玻璃微珠和碳纳米管能明显提高聚酰亚胺泡沫的起始热失重温度,热失重5%时,加入30%(质量分数)玻璃微珠可使起始热失重温度提高到593℃,加入5%(质量分数)CNT可使起始热失重温度提高到589℃。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号