首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   64篇
  免费   18篇
  国内免费   19篇
航空   54篇
航天技术   17篇
综合类   11篇
航天   19篇
  2023年   1篇
  2022年   1篇
  2021年   3篇
  2020年   3篇
  2019年   3篇
  2018年   3篇
  2017年   3篇
  2016年   5篇
  2015年   2篇
  2014年   6篇
  2013年   4篇
  2012年   2篇
  2011年   2篇
  2010年   4篇
  2009年   6篇
  2008年   5篇
  2007年   8篇
  2006年   7篇
  2005年   3篇
  2004年   2篇
  2003年   2篇
  2002年   2篇
  2001年   3篇
  2000年   3篇
  1998年   4篇
  1997年   2篇
  1996年   4篇
  1995年   2篇
  1994年   3篇
  1992年   2篇
  1991年   1篇
排序方式: 共有101条查询结果,搜索用时 406 毫秒
31.
采用硅橡胶热膨胀软模成型工艺制备高硅氧/酚醛防热材料,并用扫描电镜观察断面形貌,对比传统模压材料孔隙率和性能,对其密度及拉伸强度的离散系数进行分析。结果表明:软膜成型材料表面富有光泽;材料孔隙率低,接近"0";材料的密度和拉伸强度的离散系数分别为0. 09%和1. 95%,远小于传统模压成型材料相应的离散系数。  相似文献   
32.
BaO-La2O3-B2O3 (BLB) glass, suitable to be used as a sealing between metals, was chosen to be the binder in preparing glass coats on the Ti-alloy substrate. The SiCN nano-powder was introduced as the filler for the absorbing coat because it is considered to be a good high temperature absorber. The effect of the coating temperature and coating time on the tensile strength of the glass coat was investigated and the proper coating parameters to get good mechanical properties were determined. In addition, the effects of the SiCN content on the tensile strength of the absorbing coat were also discussed. Results show that it is possible to prepare the glass coat using the BLB glass as a binder. That the coat formed at 730 ℃ for 30 min has the best tensile strength witnesses 730 ℃, 30 min to be the proper parameter to prepare the glass coat. The BLB glass coat without SiCN powder possesses good tensile strength and the introduc-tion of the SiCN absorber into the glass coat will lower the tensile strength. As the SiCN content increases, the tensile strength of the absorbing coat decreases, which could be attributed to the aggregation of SiCN in the coats.  相似文献   
33.
采用熔体旋甩法制备了快速凝固Al87Ni7Cu3Nd3金属玻璃薄带,并以连续加热和等温加热两种模式对非晶态薄带进行退火处理。采用差示扫描量热分析、X 射线衍射分析和高分辨率电镜分析等手段研究了非晶态薄带的晶化过程,对非晶态和退火态薄带的微观结构进行了细致检测,研究重点放在形成α Al纳米晶体颗粒的初始晶化行为,以便了解Al基纳米晶/非晶复合材料的结构特征。结果表明,快速凝固Al87Ni7Cu3Nd3合金薄带为单一的非晶态结构。非晶态薄带的晶化过程包括两个主要转变:α Al晶体从非晶基体中析出的初始晶化以及有Al3Ni,Al11Nd3和Al8Cu3Nd形成的第二次晶化过程。初始晶化的速率控制过程可能是铝自扩散,而第二次晶化过程则受控于溶质原子Ni,Nd和Cu的扩散。90~160℃等温退火薄带由α Al晶体相加残余非晶相的两相组织构成,随着等温温度的提高,初始晶化过程速率增大,而随着退火时间的延长,α Al晶体相的相对含量增大。110℃等温热暴露130min退火薄带的显微组织可以描述为,在非晶基体上均匀弥散分布着体积分数约20%的α Al晶体纳米(10nm)颗粒。  相似文献   
34.
PEEK/ZrO2固体合金的探索研究   总被引:4,自引:0,他引:4  
在聚醚醚酮(PEEK)玻璃化转变温度以下,用外动式高能旋转球磨机使PEEK和二氧化锆(ZrO2)混合物反复变形、断裂和结合,并形成新的相,即形成PEEK/ZrO2固体合金.通过扫描电镜(SEM)、差示扫描量热仪(DSC)、红外光谱(FT-IR)和动态热力学分析装置(DMTA)对PEEK/ZrO2=1/2和2/1固体合金的结构及性能进行研究;并与纯PEEK对比,探讨PEEK与ZrO2形成固体合金的可能性;讨论固体合金化工艺对PEEK/ZrO2固体合金性能的影响,分析PEEK/ZrO2固体合金的形成机理.  相似文献   
35.
玻璃纤维纸是一种优良的阻燃保温隔音过滤材料,在高铁、航空航天和航海领域有广泛的应用。本文通过湿法打浆工艺制备不同纤维混合的玻璃纤维纸,重点探究其孔径分布、透气性能、保温性能以及隔音性能。结果表明:随着玻璃纤维纸中细纤维含量的增加,平均孔径和透气率先减小后增加;随着玻璃纤维纸中细纤维含量的增加,纸张的导热系数先降低后升高,隔音量先升高后降低。纤维配比为粗纤维50%+细纤维50%,玻璃纤维纸的保温隔音性能最佳。  相似文献   
36.
研究了氧化物玻璃中Eu3+离子的敏化发光。结果表明,硅酸盐玻璃中Bi3+向Eu3+离子产生共振能量转移而对Eu3+发光起敏化作用;磷酸盐玻璃中,Pr3+,Sm3+对Eu3+离子产生特征激发敏化发光,提出了声子支助的共振能量转移模型,解释了Eu3+的敏化发光。  相似文献   
37.
离子交换增强玻璃的表面酸处理   总被引:1,自引:0,他引:1  
对离子交换增强玻璃表面不同程度酸腐蚀后强度变化的情况进行了分析,并对表面腐蚀后强度的保留进行了研究.研究发现,控制合适的腐蚀厚度并进行及时有效的表面保护,不但可以保留化学增强所得的强度,甚至可以显著提高玻璃的最终强度.  相似文献   
38.
铁基Fe-Cr-Mo-C-B非晶合金具有高耐腐蚀性能和高硬度的特点,因而非常适合应用于表面及涂层材料,其较高的非晶形成能力使得采用激光表面处理技术获得理想非晶表面成为可能。采用激光表面熔化技术成功实现了Fe-CrMo-C-B合金的表面非晶化,研究了激光表面熔化工艺参数对合金表面非晶化的影响并建立了最佳工艺。发现合金经激光表面熔化处理后形成了从表面到基体的非晶层、非晶-晶体复合层和晶态基体的多层次结构,并探讨了其形成机理及与腐蚀行为和硬度的相关性。研究表明:Fe-Cr-Mo-C-B合金的硬度和腐蚀行为等表面性能显著依赖于其微观结构,激光表面熔化所获得的非晶表层表现出高硬度和优异的耐腐蚀性能。研究结果也为采用激光表面熔覆技术在其他金属材料表面制备具有实际应用价值的耐腐蚀、耐磨损Fe-Cr-Mo-C-B非晶合金涂层奠定了一定的理论和实验基础。  相似文献   
39.
系统研究界面腐蚀条件对航空层合玻璃光学性能的影响。利用光电雾度计、扫描电镜、紫外可见分光光度计等对铝硅酸盐玻璃和层合玻璃进行测试分析。结果表明,随着腐蚀液浓度(或腐蚀时间)增加,铝硅酸盐玻璃的透光率分阶段降低,铝硅酸盐玻璃的雾度先缓慢增大后迅速增大;然而,层合玻璃的透光率,随着腐蚀液浓度(或腐蚀时间)增加先增大后降低。腐蚀液中的表面活性剂对层合玻璃透光率影响甚微。当腐蚀液浓度为10%,腐蚀时间为10min时,制备的层合玻璃有较好的光学性能。  相似文献   
40.
研究了不同热处理温度对高硅氧织物增强甲基硅树脂复合材料室温弯曲强度的影响。结果表明,复合材料室温弯曲强度随着热处理温度的升高而降低,且在200~300℃、400~500℃分别出现了2个降低最快的温度区间。采用扫描电镜对复合材料弯曲断口的表面形貌进行了观察,并通过热重分析仪分别对基体树脂及增强体的热稳定性进行了测量。综合分析结果表明,当热处理温度低于400℃时,复合材料弯曲强度的降低主要是由于基体树脂与增强体之间的界面失效所致;而当热处理温度高于400℃时,增强体与树脂之间发生反应,导致增强体失效,是致使复合材料室温弯曲性能进一步下降的主要原因。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号