首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
基于陨石坑的视觉导航技术成为一种新颖的高精度空间探测自主导航方式,如何从导航图像中精确地提取陨石坑区域是实现基于陨石坑视觉导航的首要条件。针对这一问题,根据陨石坑导航图像特点,提出了一种基于自动特征学习的陨石坑区域检测算法。首先,基于最大稳定极值区域检测算法提取陨石坑候选区域;其次,利用卷积神经网络(CNN)自动学习提取候选区域的特征;最后,通过支持向量机(SVM)实现候选区域的精确分类,得到真实的陨石坑区域。大量的仿真实验表明:与传统的基于人工特征的陨石坑区域检测算法相比,提出的基于自动特征学习的陨石坑区域检测算法具有更高的检测精度和更好的鲁棒性,在通用火星表面陨石坑数据集上,所提算法的F1度量指标较于传统算法高出8%,可以广泛地应用于基于陨石坑的视觉导航算法中的陨石坑区域提取,为基于陨石坑视觉导航算法提供精确的导航路标输入。   相似文献   

2.
针对几何参数未知的非合作目标,提出一种基于双目视觉的非合作目标相对位置和姿态估计算法.对目标图像进行滤波去噪、Canny边缘提取并将每条边缘段保存至链表,将边缘段分为直线段和圆弧段;并从直线段和圆弧段中检测出矩形特征和圆形特征;根据平行直线在同一像平面投影具有相同湮灭点的性质设计矩形特征相对位置和姿态估计算法;根据圆在像平面对偶投影几何,设计圆形特征的相对位置和姿态及半径的估计算法;对实际模型图像进行处理验证,结果表明该算法能够很好地识别帆板和对接环,并有效地估计出相对位置和姿态及对接环半径.  相似文献   

3.
基于椭圆特征的空间飞行器视觉导航技术是一种新颖的高精度空间探测自主导航方法,如何对空间目标的环形边缘进行精准提取和高效拟合是实现空间飞行器视觉导航的必要条件。针对该问题,提出一种面向空间飞行器视觉导航的椭圆检测算法。利用多项式逼近导航图像连续边缘段的方式提取椭圆弧段;通过基于极大似然假设检验理论构建的模型选择判据,对来自同一个椭圆的椭圆弧段进行准确合并;对合并后的椭圆弧段进行拟合,得到空间飞行器视觉导航的椭圆检测结果。大量的仿真实验表明:与传统的椭圆检测算法相比,所提算法具有较高的精度和更高的鲁棒性,可以广泛应用于空间飞行器视觉导航图像椭圆检测,为空间飞行器视觉导航算法提供精准的二次曲线输入。  相似文献   

4.
一种基于多尺度边缘的图像融合算法   总被引:1,自引:0,他引:1  
给出了一种只利用源图像多尺度边缘点进行融合的图像融合算法.该算法分为三步:首先, 对源图像进行多尺度边缘检测;其次,采用边缘相关性最大的融合准则对源图像的多尺度边 缘进行融合,得到融合图像的多尺度边缘;最后,由融合图像的多尺度边缘重构 出融合图像.该算法融合过程中计算量小,融合图像中最大程度地保留了源图像的边缘信息 ,在一定程度上对融合图像进行了压缩,从而减小了数据存储所占用的资源以及数据传输占用 的带宽.仿真结果表明,用该算法得到的融合图像能有效包含源图像的信息.   相似文献   

5.
基于边缘对称性的视频车辆检测算法   总被引:2,自引:1,他引:1  
针对现有视频车辆检测算法受光照、阴影等环境因素影响大,漏检和误检率高的问题,提出了一种视频车辆检测算法.有别于传统算法使用运动特征进行车辆检测,该算法使用边缘特征和对性特征定位车辆.算法首先对图像进行灰度化、平滑去噪等预处理,使用Sobel算子垂直方向掩模计算图像感兴趣区域内的边缘梯度,确定候选区域;而后根据车辆图像垂直边缘具有对称性的特点,分析候选区域的对称性强弱,并计算其对称轴位置和车辆宽度.使用边缘强度、对称性和宽度这3个约束条件对候选区域进行验证.道路实验结果表明,该检测算法有效、可靠,具有良好的鲁棒性.   相似文献   

6.
针对深空探测星际着陆过程中的自主导航问题,提出一种基于星表特征直线的着陆器位姿估计算法。该算法首先采用EDLine算法对着陆过程中所拍摄的图像进行特征直线提取;其次根据直线局部特征对特征直线进行匹配;之后利用至少3对已匹配的特征直线,建立关于着陆器位姿的几何约束方程;然后根据奇异值分解法得到着陆器位姿的候选解;最终通过最小二乘法从候选解中选取着陆器位置、姿态的唯一解。仿真结果表明:该算法可以快速估计着陆器位姿,且在高度为2 000 m时位置误差小于2 m、姿态误差小于0.10°。  相似文献   

7.
空间目标快速轮廓特征提取与跟踪技术   总被引:1,自引:0,他引:1       下载免费PDF全文
为满足空间目标交会对接任务中高精度、快速的测量要求,提出了一种空间目标快速轮廓特征提取与跟踪技术。该算法首先从初始帧图像中分割定位目标所在局部区域,作为目标连续跟踪的初始值;其次基于初始帧目标局部区域完成对初始帧目标边缘特征的检测及细化处理;最后采用Hough变换完成对初始帧目标边缘的检测及细化后的局部图像轮廓直线的提取,分别选取目标轮廓四方向最优的直线参数作为最终目标轮廓直线获取的效果,并采用梯度最大法则实现两两求交获取的轮廓特征的优化提取。在目标逼近过程中,结合相邻帧图像间目标尺度动态变化的关联性,根据初始帧提取目标轮廓特征的先验信息,确定目标在第二帧图像中的轮廓位置,并依次根据上一帧图像的轮廓位置信息定位目标在当前帧所在的区域,通过局部处理实现序列图像轮廓区域特征的连续跟踪。该算法无需遍历整个图像,所需处理的目标区域大幅减小,能够有效克服由目标图像较多边缘干扰导致的轮廓提取效果差及处理速度慢的缺点,具有速度快、准确性强、稳定性高等优点。  相似文献   

8.
针对星际着陆的特征跟踪及障碍识别过程,提出了一种基于尺度不变的曲线描述及匹配方法。该方法利用曲线邻域的梯度信息形成特征描述符,无需知道各点曲率或曲线之间的几何构型,且对旋转、缩放、视角变化及光照影响都具有较强的鲁棒性。仿真实验表明,该算法不仅能够对不同尺度的陨石坑、岩石边缘等障碍或自然陆标进行识别,而且能够实现边缘曲线特征的跟踪,误匹配率低。  相似文献   

9.
一种基于陨石坑拟合椭圆的着陆器位姿估计算法   总被引:1,自引:1,他引:0  
针对星际着陆自主导航问题,提出一种利用陨石坑边缘曲线估计着陆器位姿的简便算法。该算法首先利用至少3条陨石坑边缘曲线及其对应的像曲线,建立关于着陆器位姿的几何约束方程;然后由克罗内克积和最小二乘算法,求取着陆器位置、姿态的解析解。该方法的优点在于,计算过程简单、快速。仿真结果表明,该算法可以较精确的估计着陆器位姿,鲁棒性好。  相似文献   

10.
利用数字高程模型自动检测火星表面陨石坑   总被引:1,自引:1,他引:0       下载免费PDF全文
为了克服利用影像识别陨石坑的诸多限制因素,利用"火星全球勘探者"(MGS)火星激光高度计(MOLA)得到的火星三维DEM数据,转换获得地形曲率,然后利用设定阈值将曲率图转换为二值图像,结合图像分割floodin算法可以得到待检测陨石坑,最后利用Hough变换可以检测出陨石坑。其成功率达到73.4%,可以有效地从DEM中识别陨石坑。利用DEM识别陨石坑的方法可以识别更多新的陨石坑,为现存的陨石坑目录提供新的数据信息。  相似文献   

11.
Craters are distinctive features on the surfaces of most terrestrial planets. Craters reveal the relative ages of surface units and provide information on surface geology. Extracting craters is one of the fundamental tasks in planetary research. Although many automated crater detection algorithms have been developed to exact craters from image or topographic data, most of them are applicable only in particular regions, and only a few can be widely used, especially in complex surface settings. In this study, we present a machine learning approach to crater detection from topographic data. This approach includes two steps: detecting square regions which contain one crater with the use of a boosting algorithm and delineating the rims of the crater in each square region by local terrain analysis and circular Hough transform. A new variant of Haar-like features (scaled Haar-like features) is proposed and combined with traditional Haar-like features and local binary pattern features to enhance the performance of the classifier. Experimental results with the use of Mars topographic data demonstrate that the developed approach can significantly decrease the false positive detection rate while maintaining a relatively high true positive detection rate even in challenging sites.  相似文献   

12.
Counting craters is a paramount tool of planetary analysis because it provides relative dating of planetary surfaces. Dating surfaces with high spatial resolution requires counting a very large number of small, sub-kilometer size craters. Exhaustive manual surveys of such craters over extensive regions are impractical, sparking interest in designing crater detection algorithms (CDAs). As a part of our effort to design a CDA, which is robust and practical for planetary research analysis, we propose a crater detection approach that utilizes both shape and texture features to identify efficiently sub-kilometer craters in high resolution panchromatic images. First, a mathematical morphology-based shape analysis is used to identify regions in an image that may contain craters; only those regions - crater candidates - are the subject of further processing. Second, image texture features in combination with the boosting ensemble supervised learning algorithm are used to accurately classify previously identified candidates into craters and non-craters. The design of the proposed CDA is described and its performance is evaluated using a high resolution image of Mars for which sub-kilometer craters have been manually identified. The overall detection rate of the proposed CDA is 81%, the branching factor is 0.14, and the overall quality factor is 72%. This performance is a significant improvement over the previous CDA based exclusively on the shape features. The combination of performance level and computational efficiency offered by this CDA makes it attractive for practical application.  相似文献   

13.
Crater detection via genetic search methods to reduce image features   总被引:1,自引:0,他引:1  
Recent approaches to crater detection have been inspired by face detection’s use of gray-scale texture features. Using gray-scale texture features for supervised machine learning crater detection algorithms provides better classification of craters in planetary images than previous methods. When using Haar features it is typical to generate thousands of numerical values from each candidate crater image. This magnitude of image features to extract and consider can spell disaster when the application is an entire planetary surface. One solution is to reduce the number of features extracted and considered in order to increase accuracy as well as speed. Feature subset selection provides the operational classifiers with a concise and denoised set of features by reducing irrelevant and redundant features. Feature subset selection is known to be NP-hard. To provide an efficient suboptimal solution, four genetic algorithms are proposed to use greedy selection, weighted random selection, and simulated annealing to distinguish discriminate features from indiscriminate features. Inspired by analysis regarding the relationship between subset size and accuracy, a squeezing algorithm is presented to shrink the genetic algorithm’s chromosome cardinality during the genetic iterations. A significant increase in the classification performance of a Bayesian classifier in crater detection using image texture features is observed.  相似文献   

14.
In a large majority of lunar and planetary surface images, impact craters are the most abundant geological features. Therefore, it is not surprising that crater detection algorithms (CDAs) are one of the most studied subjects of image processing and analysis in lunar and planetary science. In this work we are proposing an Integrated CDA, consisting of: (1) utilization of DEM (digital elevation map)-based CDA; (2) utilization of an optical-based CDA; (3) re-projection of used datasets and crater coordinates from normal to rotated view and back; (4) correction of the brightness and contrast of a used optical image; and (5) tile generation for the optical-based CDA and an assembling of results with an elimination of multiple detections, in combination with a pyramid approach down to the resolution of the available DEM image; and (6) a final integration of the results of DEM-based and optical-based CDAs, including a removal of duplicates. The proposed CDA is applied to one specific asteroid-like body, the small Martian moon Phobos. The experimental evaluation of the proposed CDA is done by a manual verification of crater-candidates and a search for uncatalogued craters. The evaluation has shown that the proposed CDA was used successfully for cataloging Phobos craters. The major result of this paper is the PH9224GT – currently the most complete global catalogue of the 9224 Phobos craters. The possible applications of the new catalogue are: (1) age estimations for any selected location; and (2) comparison/evaluation of the different chronology and production functions for Phobos. This confirms the practical applicability of the new Integrated CDA – an additional result of this paper, which can be used in order to considerably extend the current crater catalogues.  相似文献   

15.
Single crater-aided inertial navigation for autonomous asteroid landing   总被引:1,自引:0,他引:1  
In this paper, a novel crater-aided inertial navigation approach for autonomous asteroid landing mission is developed. It overcomes the major deficiencies of existing approaches in the literature, which mainly focuses on the case where craters are abundant in the camera field of view. As a result, traditional crater based methods require at least three craters to achieve crater matching, which limits their application in final landing phase where craters are scarce in the camera’s field of view. In contrast, the proposed algorithm enables single crater based crater matching based on a novel 2D-3D crater re-projection model. The re-projection model adopts inertial measurements as a reference, and re-projects the 3D crater model onto descent images to achieve the matching to its counterpart. An asteroid landing simulation toolbox is developed to validate the performance of the proposed approach. Through comparison with the state-of-the-art local image feature and crater based navigation algorithms, the proposed approach is validated to achieve a competitive performance in terms of feature matching and pose estimation accuracy with a much lighter computational cost.  相似文献   

16.
Impact craters are among the most noticeable geomorphological features on the planetary surface and yield significant information about terrain evolution and the history of the solar system. Thus, the recognition of impact craters is an important branch of modern planetary studies. Aiming at addressing problems associated with the insufficient and inaccurate detection of lunar impact craters, a decision fusion method within the Bayesian network (BN) framework is developed in this paper to handle multi-source information from both optical images and associated digital elevation model (DEM) data. First, we implement the edge-based method for efficiently searching crater candidates which are the image patches that can potentially contain impact craters. Secondly, the multi-source representations of an impact crater derived from both optical images and DEM data are proposed and constructed to quantitatively describe the two-dimensional (2D) and three-dimensional (3D) morphology, consisting of Histogram of Oriented Gradient (HOG), Histogram of Multi-scale Slope (HMS) and Histogram of Multi-scale Aspect (HMA). Finally, a BN-based framework integrates the multi-source representations of impact craters, which can provide reductant and complementary information, for distinguishing craters from non-craters. To evaluate the effectiveness and robustness of the proposed method, experiments were conducted on three lunar scenes using both orthoimages from the Lunar Reconnaissance Orbiter (LRO) and DEM data acquired by the Lunar Orbiter Laser Altimeter (LOLA). Experimental results demonstrate that integrating optical images with DEM data significantly decreases the number of false positives compared with using optical images alone, with F1-score of 84.8% on average. Moreover, compared with other existing fusion methods, our proposed method was quite advantageous especially for the detection of small-scale craters with diameters less than 1000 m.  相似文献   

17.
This paper provides an approach of crater detection and matching to visual navigation in planetary landing missions. The approach aims to detect craters on the planetary surface and match them to a landmark database during the descent phase of a planetary landing mission. Firstly an image region pairing method is proposed to detect the crater by using an image region feature detector. Then a WTA-rule is adopted to match the detected crater to the crater in database. To further reduce the false matching rate, an efficient method for reducing false matches using parameters of crater in 3-D database is proposed. Real images of planetary terrain and a semi-physical planetary landing simulation platform are utilized to test the performance of the approach, simulation results show the proposed approach is able to match the required number of craters to the database for pin-point planetary landing with a low rate of false detection and false matching, which will lead to an improved planetary landing precision.  相似文献   

18.
Impact craters are ubiquitous and well-studied structures of high geological relevance on the surfaces of the Earth’s Moon, the terrestrial planets, the asteroids and the satellites of the outer planets. Therefore, it is not surprising that crater detection algorithms (CDAs) are one of the most studied subjects of image processing and analysis in lunar and planetary science. In this paper we are proposing a Hybrid CDA: a modified DEM (digital elevation map) reconstruction method used as a step in an existing CDA based on Hough transform. The new Hybrid CDA consists of: (1) reconstruction of topography from optical images using a shape from shading approach; (2) utilization of the DEM-based CDA; (3) correction of brightness and contrast of optical images used in order to be more suitable for evaluation of detections. An additional result of this work is a new method for evaluation of topography reconstruction algorithms, using a DEM-based CDA and an earlier approach for evaluation of CDAs. The new Hybrid CDA was tested using two Chandrayaan-1 Moon Mineralogy Mapper (M3) images and two excerpts of the Lunar Reconnaissance Orbiter (LRO) Wide Angle Camera (WAC) global optical image mosaic. As a result, the number of craters inside these four regions increased considerably from 1754 (as available in the previous LU60645GT catalogue) to 19 396 craters (as available in the resulting new LU78287GT catalogue). This confirmed the practical applicability of the new Hybrid CDA, which can be used in order to considerably extend current crater catalogues.  相似文献   

19.
陨石坑是天体表面最为显著的地形特征,传统陨石坑识别方法主要是对小型陨石坑正负样本的二分类问题研究,且效率和精度均不高。以星体宏观视角下的大型陨石坑作为研究对象,结合图像处理和神经网络等方面的知识,创建了来自不同数据源的陨石坑样本数据库,研究了数据源对网络模型泛化能力的影响,提出了一种效率更高的陨石坑多分类识别方法。在非极大值抑制(NMS)算法基础上,提出了一种精度更高的陨石坑检测算法。经过参数优化和实验验证,构建的基于深度学习的多尺度多分类陨石坑自动识别网络框架取得了较高的准确率,在同源验证集上识别率可达0.985,在异源验证集上识别率可达0.863,并且有效改善了目标检测时检测框冗余及误检测的问题。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号