首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
武汉上空中层和低热层大气潮汐的流星雷达观测   总被引:10,自引:1,他引:10  
武汉流星雷达是2002年元月建成的我国第一部全天空流星雷达,本文对2002年2月19日到7月31日流星雷达观测的潮汐的讨论表明,武汉中层顶以周日潮汐为潮汐运动的主要分量,它的强度远大于半日潮汐,周日潮汐和半日潮汐的波源都在80km以下.周日潮汐分量在3、4月份最强,并且经向分量略强于纬向分量.两个分量的峰值在约95km处出现,分别达到44m/s和60m/s.半日潮的最大值24m/s出现在4月初约93km处.周日潮汐和半日潮汐的振幅和相位随时间呈现出拟周期变化的特征,这可能是潮汐与行星波非线形相互作用的结果.观测结果与GSWM模型的比较表明,GSWM模型在相位随高度变化趋势上与观测结果一致,但模型的周日潮相位比观测约超前1—2h,半日潮相位约滞后1—4h.在周日潮汐较强的月份,模型与观测有较大的差异,观测的幅度通常在95km附近有极大值,而模型并没有极大值.GSWM模型对半日潮的幅度的估计通常过小,观测的半日潮汐幅度有时甚至超过模型值的一倍以上.  相似文献   

2.
大气中层顶区域波相互作用的一个观测个例   总被引:2,自引:1,他引:2  
利用SOUSY VHF雷达的观测数据分析了极区中层顶83.4-91.2km范围内大气风场波动的非线性相互作用。大气风场的谱在不同高度上均有明显的潮汐分量峰值,纬向风分量中35h波、半日潮和8.9h惯必重力波构成共振相互作用对,经向风分量中33h波、半日潮和19h惯性重力波构成共振相互作用对。双谱分析表明,这些共振对在许多高度上都发生耦合,35h或33h波振幅的极小值与半日潮的极大值出现的高度几乎相同,呈现出明显的非线性相互作用在空间上不是局域的,而是存在于中层顶区域的几乎所有高度上,这种相互作用不仅导致半日潮振幅随时间的变化,也使半日潮的振幅随空间变化。35h和33h波动可能是在其他时段或其他位置通过行星波与周日潮相互作用产生的,然后传播到观测点并与半日潮发生相互作用。  相似文献   

3.
采用武汉(30°N,114°E)MF雷达在2001年冬季的风场观测数据研究中纬度低热层大气潮汐之间的二阶非线性相互作用.经向风场的Lomb-Scargle归一化振幅谱表明,周日、半日和8 h潮汐是中纬冬季中层顶区域占优势的大气扰动;此外6 h潮汐也清晰可见.双相干谱分析揭示大多数显著的双相干谱峰代表潮汐谐振分量之间的相位互相关或单个潮汐分量的自相关.对随时间变化的潮汐垂直波长的比较发现,实际观测的8h潮汐垂直波长与假定的由观测的24 h潮汐和12 h潮汐非线性相互作用产生的8 h潮汐的理论垂直波长具有明显的一致性.在94.0~98.0km高度范围,周日、半日和8h潮汐之间不仅存在明显的相位相关和垂直波数相关,且它们的振幅随时间变化也显示出振荡幅值相近、振荡相位同步或反相的相关性,表明它们之间已经发生了二阶非线性相互作用.但是在94.0 km以下,三个潮汐分量之间的各种相关性随高度的下降变得越来越弱,因此潮汐二阶相互作用更可能是一种局地和暂态的现象.   相似文献   

4.
胡雄 Igar.  K 《空间科学学报》1999,19(3):226-231
对中纬度中频雷达1997年6月82km高度的小时平均风场数据进行了动态谱分析和双谱分析,得到了中层顶区域谱行为具有多样性和各向异性的特点,以及行星波,潮汐波和重力波之间相位相干的现象,讨论了中层顶行星波,潮汐波和重力波之间存在非线性相互作用的可能性。  相似文献   

5.
在弱非线性理论基础上,将三维大气中行星波和惯性重力波从原始非弹性近似方程中分离出来,讨论了典型的2天行星波与惯性重力内波的非线性相互作用过程.从共振曲面和参量不稳定增长率来看,行星波倾向于与空间尺度较大的惯性重力波发生相互作用.利用潮汐波的等价重力波假设,讨论了2天行星波与半日潮及9.6h惯性重力波的相互作用,三波相互作用时能量守恒.非线性相互作用使2天波和潮汐波的波幅受到长期调制.   相似文献   

6.
Excitation mechanisms of nonmigrating diurnal tides in the MLT region simulated by the Kyushu-GCM are examined. It is shown that the westward propagating diurnal tide with zonal wavenumber s = 2 is mainly excited by nonlinear interactions between the migrating diurnal tide and the stationary planetary wave with zonal wavenumber s = 1, while the nonlinear excitation of the standing diurnal tide with zonal wavenumber s = 0 is less important than the excitation by tropospheric heating. Nonlinear interactions between the migrating diurnal tide and the stationary planetary wave with zonal wavenumber s = 2 are not dominant to excite the westward propagating diurnal tide with zonal wavenumber s = 3, and it is shown that the excitation by tropospheric heating is comparable to the nonlinear excitation. It is also shown that other nonmigrating diurnal tides are excited by tropospheric heating.  相似文献   

7.
The Bologna meteor radar was operational during two winter campaigns, from 6 January 1982 to 1 February 1982 and from 10 December 1982 to 2 February 1983. As occurrence of minor stratospheric warmings has been reported for these intervals, possible effects on meteor wind over Bologna related to this kind of warming are pointed out. Zonal and meridional prevailing winds are found to exhibit the maximum peak to peak value in their oscillations when a minor stratospheric warming reaches such an intensity that ΔT(90°N–60°N) at 10 mbar is reversed. Diurnal and semidiurnal tides exhibit usual amplitude variations, but the semidiurnal tide has a noticeable phase shift at the time of a minor warming occurrence, while a similar shift is less evident in the diurnal tide phase.  相似文献   

8.
The present paper is focused on the global spatial (altitude and latitude) structure, seasonal and interannual variability of the most stable in amplitude and phase eastward propagating diurnal and semidiurnal tides with zonal wavenumbers 2 and 3 derived from the SABER/TIMED temperatures for full 6 years (January 2002–December 2007). The tidal results are obtained by an analysis method where the tides (migrating and nonmigrating) and the planetary waves (zonally travelling, zonally symmetric and stationary) are simultaneously extracted from the satellite data. It has been found that the structures of the eastward propagating diurnal tides with zonal wavenumbers 3 and 2 change from antisymmetric with respect to the equator below ∼85 km height, to more symmetric above ∼95 km. The seasonal behavior of the DE3 is dominated by annual variation with maximum in August–September reaching average (2002–2007) amplitude of ∼15 K, while that of the DE2 by semiannual variation with solstice maxima and with average amplitude of ∼8 K. These tides revealed some interannual variability with a period of quasi-2 years. The seasonal behavior of the eastward propagating semidiurnal tide with zonal wavenumber 2 in the southern hemisphere (SH) is dominated by annual variation with maximum in the austral summer (November–January) while that in the northern hemisphere (NH) by semiannual variation with equinoctial maxima. The SE2 maximizes near 115 km height and at latitude of ∼30° reaching an average amplitude of ∼6 K. The seasonal behavior of the eastward propagating semidiurnal tide with zonal wavenumber 3 in both hemispheres indicates a main maximum during June solstice and a secondary one during December solstice. The tide maximizes near 110–115 km height and at a latitude of ∼30° reaching an average amplitude of ∼4.8 K in the SH and ∼4 K in the NH. The tidal structures of the two eastward propagating semidiurnal tides are predominantly antisymmetric about the equator.  相似文献   

9.
利用北京延庆子午工程激光雷达对北京上空钠层进行长期连续观测,分析研究钠层及其相关参数的周日变化.提取钠层各个高度上的相位信息,与同时段经向风潮汐信息进行比较发现:在各个高度上,二者周日相位数值基本一致.半日相位对比结果表明,虽然存在差异,但整体仍保持较好的一致性.此外,从2014年至2016年每年10月到第二年1月共4个月的钠层连续观测数据中提取钠层周日和半日的振幅和相位,探究北京上空冬季的潮汐特征.结果显示:周日潮的相位自上向下传播,且无明显的季节变化特征,其垂直波长在40~50km的范围;周日潮较强,半日潮较弱.   相似文献   

10.
This paper describes a microwave limb technique for measuring Doppler wind in the Earth’s mesosphere. The research algorithm has been applied to Aura Microwave Limb Sounder (MLS) 118.75 GHz measurements where the O2 Zeeman lines are resolved by a digital autocorrelation spectrometer. A precision of ∼17 m/s for the line-of-sight (LOS) wind is achieved at 80–92 km, which corresponds to radiometric noise during 1/6 s integration time. The LOS winds from Aura MLS are mostly in the meridional direction at low- and mid-latitudes with vertical resolution of ∼8 km. This microwave Doppler technique has potential to obtain useful winds down to ∼40 km of the Earth’s atmosphere if measurements from other MLS frequencies (near H2O, O3, and CO lines) are used. Initial analyses show that the MLS winds from the 118.75 GHz measurements agree well with the TIDI (Thermosphere Ionosphere Mesosphere Energetics and Dynamics Doppler Interferometer) winds for the perturbations induced by a strong quasi 2-day wave (QTDW) in January 2005. Time series of MLS winds reveal many interesting climatological and planetary wave features, including the diurnal, semidiurnal tides, and the QTDW. Interactions between the tides and the QTDW are clearly evident, indicating possible large tidal structural changes after the QTDW events dissipate.  相似文献   

11.
The diurnal tide in the mesosphere and lower thermosphere (MLT) shows large seasonal and interannual variations. Despite recent modeling investigations, the underlying physical mechanisms for causing these variations remain unclear. This paper provides further observational constraints to tide-sensitive variables (H2O, O3, and gravity wave variances) used by the models, which are obtained simultaneously by upper atmosphere research satellite microwave limb sounder at altitudes below the MLT region. The strong quasi biannual oscillation and semiannual oscillation variations in these measurements reveal good correlations between the diurnal tide with other tide-sensitive variables, which should be taken into account for further modeling studies.  相似文献   

12.
Tidal variability in the mesosphere and lower thermosphere (MLT) during September 2019 Southern hemisphere minor sudden stratospheric warming (SSW) is investigated utilizing ground-based meteor radar wind observations from the equatorial, extratropical, middle, and high latitude stations and global reanalysis dataset. The polar warming is found to move from the mesosphere to the stratosphere until the peak warming day (PWD) of the SSW. The diurnal and semidiurnal tides at individual observational sites do not exhibit any consistent response during the observational interval, but a notable and consistent variability in some specific zonal wavenumber components, i. e., DW1 (migrating diurnal tide), DE3 (nonmigrating eastward wavenumber 3 diurnal tide), and SW2 (migrating semidiurnal tide) is found in the global reanalysis dataset. Incidentally, the warming event occurs during Spring equinox when a dominant seasonal change in the tidal activities generally takes place and hence seasonal variability is also looked into while identifying the SSW impact during the observational interval. It is found that the seasonal broad changes in the DW1, DE3, and SW2 amplitudes can be explained by the variability in the tidal sources, i.e., water vapor, convective activity, ozone, etc during the observational period. However, the extracted short-term variability in the global tidal modes on removing seasonal trend reveals noticeable response in connection with the warming event. The deseasoned amplitude of the DW1 significantly enhances around the PWD at most of the present latitudes. The deseasoned DE3 amplitude responds significantly in the middle atmosphere at low latitudes during the warming phase. The deseasoned SW2 exhibit clear enhancement around the PWD at all the latitudes. However, the deseasoned tidal features do not seem to correlate well with that of the source species unlike the seasonal ones that imply involvement of complex processes during the warming event, seeking further future investigations in this regard.  相似文献   

13.
Moderate geomagnetic storms occurred during January 22–25, 2012 period. The geomagnetic storms are characterized by different indices and parameters. The SYM-H value on January 22 increased abruptly to 67 nT at sudden storm commencement (SSC), followed by a sharp decrease to −87 nT. A second SSC on January 24 followed by a shock on January 25 was also observed. These SSCs before the main storms and the short recovery periods imply the geomagnetic storms are CME  -driven. The sudden jump of solar wind dynamic pressure and IMF BzBz are also consistent with occurrence of CMEs. This is also reflected in the change in total electron content (TEC) during the storm relative to quiet days globally. The response of the ionospheric to geomagnetic storms can also be detected from wave components that account for the majority of TEC variance during the period. The dominant coherent modes of TEC variability are diurnal and semidiurnal signals which account upto 83% and 30% of the total TEC variance over fairly exclusive ionospheric regions respectively. Comparison of TEC anomalies attributed to diurnal (DW1) and semidiurnal (SW2) tides, as well as stationary planetary waves (SPW1) at 12 UTC shows enhancement in the positive anomalies following the storm. Moreover, the impact of the geomagnetic storms are distinctly marked in the daily time series of amplitudes of DW1, SW2 and SPW1. The abrupt changes in amplitudes of DW1 (5 TECU) and SW2 (2 TECU) are observed within 20°S–20°N latitude band and along 20°N respectively while that of SPW1 is about 3 TECU. Coherent oscillation with a period of 2.4 days between interplanetary magnetic field and TEC was detected during the storm. This oscillation is also detected in the amplitudes of DW1 over EIA regions in both hemispheres. Eventhough upward coupling of quasi two day wave (QTDWs) of the same periodicity, known to have caused such oscillation, are detected in both ionosphere and upper stratosphere, this one can likely be attributed to the geomagnetic storm as it happens after the storm commencement. Moreover, further analysis has indicated that QTDWs in the ionosphere are strengthened as a result of coherent oscillation of interplanetary magnetic field with the same frequency as QTDWs. On the otherhand, occurrences of minor SSW and geomagnetic storms in quick succession complicated clear demarcation of attribution of the respective events to variability of QTDWs amplitudes over upper stratosphere.  相似文献   

14.
The structure and variability of tides in the 80 – 120 km height region are reviewed. Particularly emphasised are seasonal-latitudinal variations in the vertical structure of diurnal and semidiurnal winds between 70 – 100 km as measured by meteor and partial reflection drift radars, and tidal temperatures determined by incoherent scatter radars between 100 and 140 km. Variations in tidal structures with longitude, from day to day, and during equinoctial transition periods are also addressed.  相似文献   

15.
武汉上空中层顶区域潮汐的MF雷达观测   总被引:1,自引:0,他引:1  
利用武汉中频雷达观测数据进行分析,研究2至3月份武汉上空中层顶潮汐结构及其随高度和时间变化的特性.用Lomb-Scargle周期图方法计算的水平风场动态功率谱表明,武汉上空存在持续的周日潮汐,是中层顶区域风场结构的主要成分.周日潮的平均振幅随高度的增加呈先增后减的趋势.大多数情况下,潮汐谱峰对应的频率与定义值有一定的偏移.周日潮水平扰动速度矢量随时问和高度变化的轨迹表明,经向分量的相位比纬向分量的相位超前,潮汐能量向上传播,对应于向下的相位传播速度.计算得出的经向分量和纬向分量的垂直相速度分别为1.10和1.15 km/h.   相似文献   

16.
Complex studies with the use of spectrum and harmonic analysis allow determination of wave disturbances in the prevailing and tidal wind, and also mesoscale short period oscillation intensity per unit mass. We particularly find enhanced periods of 4–6, 9–12, 15–20, 25–30 days, which are typical for planetary waves in the lower and middle atmosphere of the Earth. We also reveal the non-linear character of vertical amplitude and phase profiles for wave disturbances with planetary wave scales in the prevailing, tidal and short period oscillation intensity. This non-linearity is interpreted as a consequence of the non-linear interaction of waves such as internal gravity waves, tides and planetary waves among themselves and with background movements.  相似文献   

17.
重力波波包相互作用时空演变的数值研究   总被引:2,自引:2,他引:0       下载免费PDF全文
本文设计了一种研究二维空间中重力波波包共振相互作用演变的数值模式.利用此模式获得二个大振幅重力波波包通过碰撞而发生的完整的相互作用过程.数值结果表明,能量上行重力波可以通过波-波相互作用激发能量下行重力波;在相互作用的时空演变过程中,3个波包的能量收支情况和相互作用的强度具有局地性;由于考虑了空间传播效应,相互作用过程不再具有周期性,而是出现一个具有不同物理含义的相互作用特征时间,这个新的相互作用特征时间和相互作用最终的发展程度不仅由相互作用系数和初始波包振幅决定,还受到波包空间尺度和波包群速度的相对大小控制.   相似文献   

18.
The mid-latitude mesosphere and lower thermosphere (MLT) wind speeds measured by two SKiYMET meteor radars (MRs) at Collm (51°N, 13°E) and Kazan (56°N, 49°E) during 2016–2017 were analyzed to study longitudinal wind structures. The differences between monthly mean prevailing wind speeds and tidal amplitudes were compared with the corresponding differences obtained from TIMED/TIDI satellite winds and gradient wind speeds from the AURA/MLS instrument. It is shown that the MR wind difference between the two sites is statistically significant. The difference of the horizontal prevailing winds can be explained by a superposition of the background zonal flow, which is different at the two latitudes, with stationary planetary waves of different origin. Non-migrating tides contribute significantly to the difference of the semidiurnal tidal winds between the two sites.  相似文献   

19.
Airglow volume emission rates of the O(1D) red line at 630.0 nm and the O(1S) green line at 557.7 nm were measured by the Wind Imaging Interferometer (WINDII) on the Upper Atmospheric Research Satellite (UARS) during 1991–1997. Focus of this study is on the peak volume emission rates of the two airglows after removing the direct solar effect, which are referred to as the ‘dark’ peak emission rates. The main results are as follows. For the red line emission, at low and mid-latitudes the daytime variation does not have a clear pattern except an enhancement at dusk; during nighttime there is an enhancement in the equatorial region at 20–03 h, which has a semiannual variation with maxima at equinoxes; at solstices the daytime O(1D) dark emission rate is stronger in winter than in summer. For both the green line E-and F-layers the distribution of the dark peak volume emission rate is symmetric about noon in all seasons, symmetric about the equator at equinoxes, and stronger in summer than in winter. The O(1S) E-layer is profoundly affected by tides. For the first time the diurnal and semidiurnal amplitudes for the emission rates are derived using 24-h zero-sun data. The amplitude of the diurnal tide can be as large as 20% of the mean peak volume emission rate, and has maxima at the equator and about 40°N/S, and minima at about 20°N/S. The daily diurnal maximum is at noon at the equator but at midnight at 40°N/S. There is a clear semiannual variation of the diurnal amplitude in the equatorial region with maxima at equinoxes. The amplitude of the semidiurnal tide is mostly less than 10% of the mean peak volume emission rate with maximum amplitudes at noon and midnight. There is an annual variation of the semidiurnal amplitude at mid-latitudes peaking in summer. Aurorae appear in all three emission layers day and night. The green aurorae are brighter than the red aurorae, and the green E-layer aurorae are 2–3 times stronger than the F-layer aurorae. The green aurora has a clear midday gap in the F-layer and an afternoon gap in the E-layer. The red aurorae are particularly strong in the so-called cusp region at equinoxes.  相似文献   

20.
以激光雷达夜间观测的温度数据的时空范围和时空分辨率作为参考,构造具有已知背景温度(由稳态背景、行星波和潮汐波组成)和重力波频谱分布的合成温度数据,针对合成温度数据,分别采用已有的夜间平均方法和时间滑动平均方法提取重力波.在此基础上,提出了用谐波函数近似表示背景大气变化的谐波拟合方法提取重力波.通过比较提取出的重力波与事先给定的重力波得到谱响应,利用谱响应定量分析各方法能够有效提取重力波的周期范围.研究结果表明:对背景温度成分敏感的夜间平均方法提取的重力波振幅易被严重高估;对半日潮汐比较敏感的时间滑动平均方法通常可以提取周期小于1.15倍窗口宽度的重力波;对背景温度成分不敏感的谐波拟合方法可用来提取周期小于0.4倍夜间时间长度的重力波.将各方法应用于Na激光雷达夜间观测的温度数据,从中提取重力波,结果表明时间滑动平均方法和谐波拟合方法可以得到较好的结果.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号