首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Measurements and theory of diurnal and semidiurnal tidal oscillations between about 25 and 80 km are reviewed. At latitudes greater than about 30°, meridional (N-S) wind components are consistently in quadrature with and similar to the zonal (E-W) components. The tidal structures are interpreted as a superposition of quasi-steady higher-order modes excited in the troposphere by sources of limited extent (1,000–10,000 km). At latitudes less than about 30°, steady or quasi-steady diurnal and semidiurnal components are not necessarily the dominant components of the daily variation. At high latitudes diurnal phases generally show little change with height in comparison with observations at lower latitudes, in accord with the latitudinal properties of diurnal modes with positive and negative equivalent depths.  相似文献   

2.
Measurements of turbulent energy dissipation rates and eddy diffusion coefficients have been collated, and mean height profiles of fundamental turbulence parameters in the region 80–120 km are presented.  相似文献   

3.
The development of the new CIRA will require the combination of winds from many sources, e.g. rockets (ROCOB) up to ~60 km, and radar winds ~60–110 km. Difficulties are that such rocket data have larger errors at 60–65 km, and tidal effects may become significant. Radar data for 60–80 km may also have tidal contamination, due to ? 16h of data per day: from 80–110 km tidal corrections are usually reliable.Comparisons are made between the unique Saskatoon MF radar set, which is continuous from mid 1978–1983, and the ROCOB data from Primrose Lake, which is only 340 km northwest. While the agreement is satisfactory, special care is required when matching the two regions: particular problems are the low rocket sampling rate, and the unexpectedly large amplitude of the diurnal tide. Important differences from the zonal winds of CIRA-72 emerge, especially in winter months. Meridional cross-sections differ from previous data models in the extent of the summer equatorward flow.  相似文献   

4.
The global developments of the stratospheric events (~20–50 km) are briefly described using balloon and satellite data. Winds data from L.F. drift (52°N, 15°E, Europe) for heights of 90–100 km, and from M.F. radar (52°N, 107°W, Canada) for heights of 60–110 km are then compared with the stratospheric morphology.Data for 1982/3 and 1983/4 show that the planetary wave activity and warmings produced strong westward and southward perturbations in the radar winds. Satellite data from 0.1, 0.01 hPa are consistent with these winds; and also show smaller scale structures in the mesosphere than the stratosphere. The semi-diurnal tide responded strongly to the atmospheric disturbances in Europe and Canada: for the latter vertical wavelength changes occurred for heights of 70–100 km. However the correlation between these tidal fluctuations was not high indicating that the tidal adjustments were continental rather than hemispheric.  相似文献   

5.
We have used the technique suggested by Hocking [Hocking, W. A new approach to momentum flux determinations using SKiYMET meteor radars. Ann. Geophys. 23, 2005.] to derive short period wind variances in the 80–100 km region from meteor radar data. We find that these fluctuating winds, assumed to correspond to gravity waves and turbulence, are closely correlated with the vertical shear of the horizontal tidal winds. This close correlation suggests that in situ wind shear may be a major source of gravity waves and turbulence in the MLT. If this is the case, gravity waves generated in the troposphere and propagating up to the MLT region, generally assumed to constitute an important influence on the climatology of the region, may be a less important source of energy and momentum in the 80–100 km region than has been hitherto believed.  相似文献   

6.
We describe the “Monitor e Imageador de Raios-X” (MIRAX), an X-ray astronomy satellite mission proposed by the high-energy astrophysics group at the National Institute for Space Research (INPE) in Brazil to the Brazilian Space Agency. MIRAX is an international collaboration that includes, besides INPE, the University of California San Diego, the University of Tübingen in Germany, the Massachusetts Institute of Technology and the Space Research Organization Netherlands. The payload of MIRAX will consist of two identical hard X-ray cameras (10–200 keV) and one soft X-ray camera (2–28 keV), both with angular resolution of 5–7. The basic objective of MIRAX is to carry out continuous broadband imaging spectroscopy observations of a large source sample (9 months/yr) in the central Galactic plane region. This will allow the detection, localization, possible identification, and spectral/temporal study of the entire history of transient phenomena to be carried out in one single mission. MIRAX will have sensitivities of 5 mCrab/day in the 2–10 keV band (2 times better than the All Sky Monitor on Rossi X-ray Timing Explorer) and 2.6 mCrab/day in the 10–100 keV band (40 times better than the Earth Occultation technique of the Burst and Transient Source Experiment on the Compton Gamma-Ray Observatory). The MIRAX spacecraft will weigh about 200 kg and is expected to be launched in a low-altitude (600 km) circular equatorial orbit around 2007/2008.  相似文献   

7.
During the last decade a large number of radars (~12) have been developed, which have produced substantial quantities of tidally-corrected mean winds data. The distribution of the radars is not global, but many areas are well covered: the Americas with Poker Flat (65°N), Saskatoon (52°N), Durham (43°N), Atlanta (34°N), Puerto Rico (18°N); Europe with Kiruna (68°), Garchy (47°N) and Monpazier (44°N); and Oceania with Christchurch (44°S), Adelaide (35°S), Townsville (20°S), and Kyoto (35°N). Zonal and meridional wind height-time cross-sections from 6080 km (MF/Meteor Radar) to ~110 km have been prepared for the last 5–6 years. They are compared with cross-sections from CIRA-72 for zonal winds, and Groves (1969) for meridional winds.It is shown that while CIRA-72 is still a useful model for many purposes, significant differences exist between it and the new radar data. The latter demonstrate important seasonal, latitudinal, longitudinal and hemispheric variations. The new meridional cross-sections are of great value. The common features with Groves (1969) are the equatorward cells in summer near 85 km; however their strength (~10 ms?1) and size are less. Systematic and somewhat different variations emerge at higher (?52°N) and middle (35–44°) latitudes.  相似文献   

8.
An empirical model of electron temperature (Te) for low and middle latitudes is proposed in view of IRI. It is constructed on the basis of experimental data obtained at 100 to 200 km by probe and incoherent scatter methods. Below 150 km the model gives two Te values: one from incoherent scatter data and another from probe measurements. The model can be used for all seasons for quiet geomagnetic conditions (Kp not greater 3) and at almost all levels of solar activity (F10.7 between 70 and 200). It is presented in an analytical form that allows one to calculate Te profiles for different latitudes, longitudes and at any season (day). Depending on geomagnetic latitude and solar zenith angle, electron temperature distributions are presented for two heights along with Te profile variations during the day (at middle latitudes).  相似文献   

9.
Vertical profiles of stratospheric nitrogen dioxide (NO2) have been retrieved from moderate resolution lunar occultation transmission spectra measured by Scanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) on board the European Environmental Satellite (ENVISAT). These measurements were taken over the high southern latitude of 50°–90° during the period of 2003–2005. To assess the accuracy of the retrieved NO2 profiles, the SCIAMACHY nighttime NO2 profiles were compared with NO2 profiles retrieved from sunrise solar occultation spectra measured by the Halogen Occultation Experiment (HALOE) and the Stratospheric Aerosol and Gas Experiments II (SAGE II) using a photochemical correction model. The validation results show good agreement of SCIAMACHY lunar occultation NO2 with scaled HALOE and SAGE II profiles. The relative mean differences (rmd) with scaled HALOE profiles are within −13% to +5% and standard deviations (rms) of the relative differences are within 3–19% between 25 and 38 km. The rmd and rms with scaled SAGE II NO2 profiles are in the range of −9 to +7 and 10–17% respectively between 22 and 39 km.  相似文献   

10.
New experimental data obtained on the orbital station ‘MIR’ in 1991 during solar maximum are discussed. Electron fluxes with Ee>75 keV were registered for three different directions as well as for electrons with Ee>300 and 600 keV. Spatial and time distributions of electron fluxes in the trapping region are presented. In the inner radiation belt an additional maximum is observed at L=1.25–1.35, and the fluxes in the 22-05h MLT interval are 2–3 orders of magnitude smaller, than during other local times. In this region a flattening of the electron spectrum is observed. The results obtained were compared with the AE-8 model.  相似文献   

11.
Two rocket experiments were carried out just before and after the polar night at Andoya (69°N), Norway to investigate transport of nitric oxide produced by auroral processes into the middle atmosphere and its influence on the ozone chemistry. Nitric oxide densities of (2–5) × 108cm−3 found in the 70–90 km region are one to two orders of magnitude larger than those at middle latitudes. The influence on ozone densities in the 70–90 km region due to such enhanced nitric oxide abundance is found to be insignificant as compared to that due to transport in the middle of February. The larger ozone densities found in February (in spite of longer sunlit duration) than in November in the 40–60 km region again support predominance of transport over photochemical loss.  相似文献   

12.
In an earlier report [1] the authors proposed an Indian Standard Tropical Atmosphere (ISTA1) from mean sea level to 20 km. This proposal describes adequately the mean conditions from 0° to about 30°N. The present work extends ISTA1 to the higher altitude of 50 km based oni. World Data Center A reports on Rocket firings [2],ii. M-100 rocket data for Thumba, India [3],iii. Northern Reference Atmospheres data of Cole and Kantor [4], andiv. Southern Reference Atmospheres data of Koshelkov [5].The proposed atmosphere, called ISTA7, has a sea level temperature of 30°C and a constant lapse rate of 6.5°C/km up to 16 km, as in ISTA1; from a temperature of -74°C at this altitude, there is a constant lapse rate of -2.3°C/km up to 46 km where the temperature is -5°C; the temperature remains constant thereafter up to 50 km. The fact that variations with longitude are weak except at very high latitudes [4], together with the fact that around 50 km, the temperature increases from low to high latitudes, lead us to propose a constant temperature of -5°C between 46 and 50 km, even though this temperature is slightly higher (by about 5°C) than the Thumba data.1/  相似文献   

13.
This paper deals with the application of SeaWIFS images to characterize spatial and temporal variability of fronts in the Rio de la Plata estuarine system over the period 2000–2003. We aim to depict the relationship between river outflow and variability of fronts’ loci on monthly to ENSO-related timescales and the influence of the winds along Rio de la Plata (axial winds) on the abrupt changes in frontal dynamics over synoptic timescales. During the studied period both La Niña (July 1999–June 2000) and El Niño (April 2002–May 2003) events induced significant displacements of fronts. Three distinct fronts were analyzed between river, estuarine, coastal and marine waters of the Rio de la Plata: Main Turbidity Front, Main Marine Front, and Secondary Marine Front. Their number, location and separation seem to be mainly related to river outflow and second, to fresh (>8 m/s) axial winds. During low discharge periods (i.e. summer time and/or La Niña events) these winds induce abrupt changes in the location of fronts (100–200 km) and greater separation between them over synoptic timescale, whereas during high river discharge or ENSO years some of the variability of fronts location is explained by the river’s outflow fluctuations, especially by the high variability of the River Uruguay discharge.  相似文献   

14.
武汉上空中层和低热层大气潮汐的流星雷达观测   总被引:10,自引:1,他引:10  
武汉流星雷达是2002年元月建成的我国第一部全天空流星雷达,本文对2002年2月19日到7月31日流星雷达观测的潮汐的讨论表明,武汉中层顶以周日潮汐为潮汐运动的主要分量,它的强度远大于半日潮汐,周日潮汐和半日潮汐的波源都在80km以下.周日潮汐分量在3、4月份最强,并且经向分量略强于纬向分量.两个分量的峰值在约95km处出现,分别达到44m/s和60m/s.半日潮的最大值24m/s出现在4月初约93km处.周日潮汐和半日潮汐的振幅和相位随时间呈现出拟周期变化的特征,这可能是潮汐与行星波非线形相互作用的结果.观测结果与GSWM模型的比较表明,GSWM模型在相位随高度变化趋势上与观测结果一致,但模型的周日潮相位比观测约超前1—2h,半日潮相位约滞后1—4h.在周日潮汐较强的月份,模型与观测有较大的差异,观测的幅度通常在95km附近有极大值,而模型并没有极大值.GSWM模型对半日潮的幅度的估计通常过小,观测的半日潮汐幅度有时甚至超过模型值的一倍以上.  相似文献   

15.
利用光化平衡模式计算了低纬100—200km间白天电子数密度的变化。求得E-F1谷区的谷深,谷宽、谷高的变化特征。获得如下结果:a.太阳活动明显影响电子数密度随高度及太阳天顶角的变化,发现太阳活动指数与电子数密度间不仅存在正相关,而且存在负相关;b.太阳活动明显影响E-F1谷区的形态。在一定太阳活动条件下,对同一太阳赤纬和地理纬度,谷深、谷宽与太阳天顶角的关系难以用一简单函数来表示;c.太阳耀斑、地磁活动对该区电子密度有明显影响;d.在讨论100—200km间电子密度时不能忽略O+(2P)和NO的光电离率。   相似文献   

16.
Relative abundances of sub-iron (Sc-Cr) to iron nuclei in low energy (50–100 MeV/N) galactic cosmic rays have been determined from an analysis of about 100 events of heavy ions (Z = 10−28) recorded in a detector assembly flown in the Anuradha cosmic ray experiment in the Spacelab-3 on a six day mission in April–May 1985. The measured abundance ratio of (Sc-Cr)/Fe nuclei in 50–100 MeV/N energy range is 1.1 ± 0.3, and the present result of enhanced ratio of sub-iron to iron nuclei is in agreement with other experimental results in 200–800 MeV/N range. The over-abundance of iron secondaries at these low energies cannot be explained in the conventional models for propagation of cosmic rays. Available experimental data indicate a very different time history for the low energy iron-group, as compared to those of lighter nuclei in galactic cosmic rays.  相似文献   

17.
中频雷达用来开展夜间100km高度以上的流星观测,获得流星随时间、高度、方位的分布情况及流星体速度、流星辐射点、流星余迹径向速度等参数,其探测数据可用于流星天文学、中层大气动力学等领域的研究.利用2017年11月16日12:00UT-22:00UT期间廊坊观测站(39.4°N,116.7°E)的中频雷达数据,首次开展了中国中纬度地区夜间流星观测实验,共检测到94个流星回波信号,集中分布在97~115km高度范围内,平均高度为106.5km,计算得到了流星回波的双极扩散系数、方位分布等相关参数,并与国外中频雷达流星探测结果进行了初步比较.   相似文献   

18.
Two rocket experiments KOMBI-SAMA with plasma injection at height 100–240 km were performed in August 1987 in the region of Brazilian magnetic anomaly (L = 1.25). The launching time of the rocket was determined so that plasma injection was at the time when satellite COSMOS 1809 passed as close as possible to magnetic tube of injection. Caesium plasma jet was produced during ≥ 300 s by electric plasma generator separated from the payload. By diagnostic instruments on board of the rocket and the satellite were registered energetic particle fluxes and plasma wave activities stimulated by plasma injection. When the satellite passed the geomagnetic tube intersecting the injection region an enhancement of ELF emission at 140 Hz, 450 Hz by 2 times was registered on board the satellite. An enhancement of energetic particles (E > 40 keV) flux by 4–5 times was registered on board the rocket. Observed ELV emission below 100 Hz is interpreted as generation of oblique electromagnetic ion-cyclotron waves due to drift plasma instability at the front of the plasma jet.  相似文献   

19.
The data base DB SCR uses data obtained by the SCR instrument package on the CORONAS-I satellite. DB SCR contains information about fluxes of relativistic electrons (0.5–124 MeV), protons (1–300 MeV), nuclei (1–19 MeV/nucl) and γ-radiation (0.1–7 MeV) in the low altitude region (500 km). The time resolution of the data is 2.5 s. Magnetic field parameters (B, magnetic latitude and longitude), L-shell and local times (LT and MLT) are included in DB SCR. Since all parameters are equivalents it is possible to perform the multidimensional analysis for any set of DB SCR parameters. The additional DB SCR software packages may be used to develop different semi-empirical models.  相似文献   

20.
Our empirical model of electron density (ne) for quiet and weakly disturbed geomagnetic conditions (Kp not greater 4) takes account of comparative analysis of existing models and of experimental data obtained by rockets and incoherent scatter radar. The model describes the ne distribution in the 80 to 200 km height range at low and middle latitudes, and to some extent, in the subauroral region. It is presented in analytical form thus allowing one to calculate electron density profiles for any time. The electron density distribution at 140 km depends on the season (day of the year) and on the solar zenith angle. Profile variations during the day are for one season shown. Different from other models, ours specifies the variations during sunrise and sunset and reflects the particular profile shape at night admitting the occurrence of an intermediate layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号