首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 57 毫秒
1.
基于GNSS的高轨卫星定位技术研究   总被引:3,自引:0,他引:3  
利用全球卫星导航系统(GNSS)进行导航定位具有全球、全天候、实时和高精度的优点,应用于高地球轨道(HEO)卫星的定位,能够提供精确的轨道和姿态确定,并且可以克服目前主要利用地面测控系统对HEO卫星进行定位的设备复杂、投资高等缺点,使得自主导航成为可能.本文对利用GNSS的高轨卫星定位相关技术进行了研究,分析了单一GNSS系统和多个GNSS组合系统的卫星可见性、动态性和几何精度因子(GDOP).通过仿真分析表明,利用组合GNSS系统并通过提高GNSS接收机灵敏度的方法,可以解决GNSS进行HEO卫星定位的相关问题,并能保证HEO卫星定位精度的要求.   相似文献   

2.
全球导航卫星系统(GlobalNavigationSatelliteSystem,GNSS)应用于高轨航天器时,因轨道高于导航卫星,可见星数量急剧减少,空间信号功率微弱,信号的快速捕获和跟踪十分困难。文章对高轨地球同步轨道(GeosynchronousEarthOrbit,GEO)接收技术进行了研究。以中国实践十七号卫星为研究对象,采用官方正式发布的发射天线方向图对GEO下GNSS信号特征及可用性开展研究分析,并针对高轨道航天器GNSS信号微弱的特点,采用长时间积分处理的梳状滤波方法、差分相干累加比特同步算法和基于动力学模型补偿的扩展卡尔曼滤波自主定轨算法设计GNSS接收机,并在半物理仿真平台进行了测试验证。试验结果表明:GNSS接收机捕获灵敏度优于-173dBW,跟踪灵敏度优于-175dBW,定轨位置精度优于50m,速度精度优于0.01m/s。  相似文献   

3.
Integrity is the ability of Global Navigation Satellite Systems (GNSS) to detect faults in measurements and provide timely warnings to users and operators when the navigation system cannot meet the defined performance standards, which is of great importance for safety of life critical applications. Compared with both Receiver Autonomous Integrity Monitoring (RAIM) and ground based GNSS Integrity Channel (GIC) methods which are widely adopted nowadays, the Satellite Autonomous Integrity Monitoring (SAIM) method can be used to monitor orbit/ephemeris and clock errors, and has advantages in monitoring orbit and clock quality and providing instantaneous responses when faults happen.  相似文献   

4.
Global Navigation Satellite System (GNSS) has been widely used in many geosciences areas with its Positioning, Navigation and Timing (PNT) service. However, GNSS still has its own bottleneck, such as the long initialization period of Precise Point Positioning (PPP) without dense reference network. Recently, the concept of PNTRC (Positioning, Navigation, Timing, Remote sensing and Communication) has been put forward, where Low Earth Orbit (LEO) satellite constellations are recruited to fulfill diverse missions. In navigation aspect, a number of selected LEO satellites can be equipped with a transmitter to transmit similar navigation signals to ground users, so that they can serve as GNSS satellites but with much faster geometric change to enhance GNSS capability, which is named as LEO constellation enhanced GNSS (LeGNSS). As a result, the initialization time of PPP is expected to be shortened to the level of a few minutes or even seconds depending on the number of the LEO satellites involved. In this article, we simulate all the relevant data from June 8th to 14th, 2014 and investigate the feasibility of LeGNSS with the concentration on the key issues in the whole data processing for providing real-time PPP service based on a system configuration with fourteen satellites of BeiDou Navigation Satellite System (BDS), twenty-four satellites of the Global Positioning System (GPS), and sixty-six satellites of the Iridium satellite constellations. At the server-end, Precise Orbit Determination (POD) and Precise Clock Estimation (PCE) with various operational modes are investigated using simulated observations. It is found out that GNSS POD with partial LEO satellites is the most practical mode of LeGNSS operation. At the user-end, the Geometry Dilution Of Precision (GDOP) and Signal-In-Space Ranging Error (SISRE) are calculated and assessed for different positioning schemes in order to demonstrate the performance of LeGNSS. Centimeter level SISRE can be achieved for LeGNSS.  相似文献   

5.
We introduce a new global ionospheric modeling software—IonoGim, using ground-based GNSS data, the altimetry satellite and LEO (Low Earth Orbit) occultation data to establish the global ionospheric model. The software is programmed by C++ with fast computing speed and highly automatic degree, it is especially suitable for automatic ionosphere modeling. The global ionospheric model and DCBs obtained from IonoGim were compared with the CODE (Center for Orbit Determination in Europe) to verify its accuracy and reliability. The results show that IonoGim and CODE have good agreement with small difference, indicating that IonoGim owns high accuracy and reliability, and can be fully applicable for high-precision ionospheric research. In addition, through comparison between only using ground-based GNSS observations and multi-source data model, it can be demonstrated that the space-based ionospheric data effectively improve the model precision in marine areas where the ground-based GNSS tracking station lacks.  相似文献   

6.
Global Navigation Satellite System (GNSS) remote sensing precipitable water vapour (PWV) data from November 2015 to March 2019 were combined with snowfall observation data and used to analyse PWV characteristics in Liaoning Province during the snow season (from November to March the following year) and their relationship with snowfall. The potential of using GNSS for PWV measurements was demonstrated using sounding data with a correlation coefficient higher than 0.9 and a mean bias error lower than 0.5 mm. According to the GNSS PWV data gathered at 30-min intervals from 68 GNSS stations in Liaoning during the snow season, the monthly PWV average was highest in November and lowest in January. Negative correlations were found between PWV and altitude. Most of the water vapour was concentrated in the low layer of the atmosphere, and the contribution of this vapour to the PWV was higher during the snow season than in summer. A total of 43 snow cases were identified using the snowfall records from 53 GNSS stations, and the characteristics of PWV during these snowfalls were analysed. An increase in PWV was observed before snowfall events. Moreover, the influence of synoptic systems and air mass origins on PWV was analysed based on National Centers for Environmental Prediction (NCEP) reanalysis data and the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model. The results show that the water vapour condition was better when the synoptic systems or air masses came from areas south of Liaoning.  相似文献   

7.
The quasi-biennial oscillation, QBO, a well known periodicity in the equatorial stratospheric zonal winds, is also found in ionospheric parameters and in solar and geomagnetic activity indices. Many authors speculated about the link between the QBO in solar and geomagnetic activity and the QBO in atmospheric parameters. In this work we analyze the presence of the QBO in the ionosphere using the Vertical Total Electron Content (VTEC) values obtained from Global Navigation Satellite System (GNSS) measurements during the period 1999–2012. In particular, we used IONEX files, i.e. the International GNSS Service (IGS) ionospheric products. IONEX provide VTEC values around the world at 2-h intervals. From these data we compute global and zonal averages of VTEC at different local times at mid and equatorial geomagnetic latitudes. VTEC and Extreme Ultra Violet (EUV) solar flux time series are analyzed using a wavelet multi resolution analysis. In all cases the QBO is detected among other expected periodicities.  相似文献   

8.
针对如何利用GNSS(Global Navigation Satellite System)数据进行电离层扰动监测的问题,提出了一种基于GNSS数据表征全球电离层扰动的方法.利用大约400个GNSS地面站点的观测数据,计算总电子含量(Total Electron Content,TEC)变化率的标准差——ROTI(Ra...  相似文献   

9.
Global sea level rise due to an increasingly warmer climate has begun to induce hazards, adversely affecting the lives and properties of people residing in low-lying coastal regions and islands. Therefore, it is important to monitor and understand variations in coastal sea level covering offshore regions. Signal-to-noise ratio (SNR) data of Global Navigation Satellite System (GNSS) have been successfully used to robustly derive sea level heights (SLHs). In Taiwan, there are a number of continuously operating GNSS stations, not originally installed for sea level monitoring. They were established in harbors or near coastal regions for monitoring land motion. This study utilizes existing SNR data from three GNSS stations (Kaohsiung, Suao, and TaiCOAST) in Taiwan to compute SLHs with two methods, namely, Lomb–Scargle Periodogram (LSP)-only, and LSP aided with tidal harmonic analysis developed in this study. The results of both methods are compared with co-located or nearby tide gauge records. Due to the poor quality of SNR data, the worst accuracy of SLHs derived from traditional LSP-only method exceeds 1?m at the TaiCOAST station. With our procedure, the standard deviations (STDs) of difference between GNSS-derived SLHs and tide gauge records in Kaohsiung and Suao stations decreased to 10?cm and the results show excellent agreement with tide gauge derived relative sea level records, with STD of differences of 7?cm and correlation coefficient of 0.96. In addition, the absolute GNSS-R sea level trend in Kaohsiung during 2006–2011 agrees well with that derived from satellite altimetry. We conclude that the coastal GNSS stations in Taiwan have the potential of monitoring absolute coastal sea level change accurately when our proposed methodology is used.  相似文献   

10.
This study presents unique perspectives of occurrence and strength of low latitude ionospheric scintillations on multiple signals of Global Navigation Satellite System (GNSS) and its frequency dependence using continuous observation records of 780 nights. A robust comparative analysis is performed using scintillation index, S4 and its variation during pre-midnight and post-midnight duration from a GNSS receiver located at Waltair (17.7°N, 83.3°E), India, covering period from July 2014 to August 2016. The results, generally exhibit the impact of declining phase of solar cycle 24 on occurrence and strength of scintillations, which, however, is evidently different over different frequencies transmitted from different GNSS systems. A deeper quantitative analysis uniquely reveals that apart from the solar cycle and seasonal effects, the number of visible satellites of a selected GNSS markedly affect the occurrence and also the strength. Processing scheme of adopting 6 hourly time windows of pre-midnight and post-midnight brought a novel result that the strength and occurrence of strong scintillations decrease with declining solar activity during pre-midnight hours but remarkably increase for moderate and weak scintillations during post-midnight. The physical processes that dominate the post-midnight equatorial ionosphere are invoked to explain such variations that are special during declining solar activity. Finally, inter-GNSS signal analysis in terms of the effect of strong, moderate and weak scintillations is presented with due consideration of number of satellite passes affected and frequency dependence of mean S4. The quantitative results of this study emphasize for the first time effect of low latitude scintillation on GNSS signals in Indian zone under changing background solar and seasonal conditions.  相似文献   

11.
Ionospheric delay is one of the significant error sources for global navigation satellite system (GNSS) positioning. GNSSs broadcast the coefficients of the ionospheric model to correct ionospheric delay for single-frequency users. A modified three-dimensional model (NeQuick G) based on the NeQuick climatological model is adopted for Galileo users. The NeQuick G model uses the effective ionization level (Az) instead of the sunspot number as the driving parameter. In this study, we introduce the ionospheric climate index (ICI) as a new driving parameter for the NeQuick model. In comparison, the ICI-driven NeQuick model has a better performance than the Az-driven NeQuick G model at both low and high latitudes. In addition, only one GNSS station at low latitudes is required to calculate the ICI, which would save maintenance costs and improve the efficiency of updating the broadcast coefficients. This model has potential application value for future upgrades of Galileo’s ionospheric broadcast model.  相似文献   

12.
提出了一种基于极大验后估计理论的全球电离层预报方法,基于中国科学院电离层分析中心(CAS)提供的快速全球电离层地图(GIM),实现了1天、2天和5天GIM的预报。以国际GNSS服务组织(IGS)最终GIM、Jason测高卫星提供的电离层观测信息及全球GNSS基准站实测电离层总电子含量(TEC)为基准,评估了2008-2017年CAS电离层预报GIM在全球大陆及海洋区域的精度,并与欧洲定轨中心(CODE)、欧洲空间局(ESA)和西班牙加泰罗尼亚理工大学(UPC)的预报GIM进行对比。在评估时段内,与IGS-GIM相比,CAS预报GIM精度为2.4~3.1 TECU;与测高卫星TEC相比,CAS预报GIM的精度为5.1~6.6 TECU;与全球基准站实测TEC相比,CAS预报GIM的电离层延迟修正精度优于80%。总体来看,CAS预报GIM与CODE预报GIM精度相当,显著优于ESA和UPC预报GIM。   相似文献   

13.
Carrier phase ambiguity resolution of Global Navigation Satellite System (GNSS) is a key technology for high-precision navigation and positioning, and it is a challenge for applications which require both high accuracy and high integrity. This paper proposes efficient ambiguity resolution methods based on integrity restriction using Fixed Failure rate Ratio Test (FF-RT) and Doubly Non-central F-distribution Ratio Test (DNF-RT), and derives the related processing models and numerical algorithms compared with the traditional Ratio Test (RT) method. Firstly, the integer ambiguity resolution and validation procedures, especially the Least squares AMBiguity Decorrelation Adjustment (LAMBDA) estimation and RT validation are analyzed. Then the quality evaluation using success rate, the FF-RT method using Integer Aperture (IA) estimation and the NDF-RT method are proposed. Lastly, the simulation and analysis for LAMBDA using RT, FF-RT and DNF-RT methods are performed. Simulation results show that in case of unbiased scenario FF-RT and DNF-RT have similar performances, which are significantly better than RT. In case of biased scenario it is difficult for FF-RT to predict the biased success rate thus it should not be used for bias detection, while DNF-RT can detect biases in most cases except for the biases are approximate or equal to integer, which has the important benefit for early detection of potential threat to the position solution.  相似文献   

14.
目前鲜有对北斗卫星导航系统(BeiDouNavigationSatelliteSystem,BDS)实时精密定轨与钟差确定的研究,文章提出了BDS实时轨道与实时钟差处理策略,包括了观测与动力学模型、实时轨道与实时钟差处理流程与评估方法。尤其对于实时钟差,为了提高计算效率,联合使用两个独立并行的线程估计非差绝对钟差和历元间相对钟差。利用多模全球卫星导航系统试验(MGEX)与全球连续检测评估系统(iGMAS)实测数据进行了北斗实时轨道与钟差解算,BDS实时轨道径向平均精度对于GEO卫星优于20cm,对于IGSO与MEO一般优于10cm;钟差精度对于GEO卫星为0.5~4.5ns,对于IGSO/MEO为0.2~2.0ns。基于目前的轨道与钟差结果,实时精密单点定位(PrecisePointPositioning,PPP)结果可以达到分米量级。  相似文献   

15.
This paper proposes a method of real-time monitoring and modeling the ionospheric Total Electron Content (TEC) by Precise Point Positioning (PPP). Firstly, the ionospheric TEC and receiver’s Differential Code Biases (DCB) are estimated with the undifferenced raw observation in real-time, then the ionospheric TEC model is established based on the Single Layer Model (SLM) assumption and the recovered ionospheric TEC. In this study, phase observations with high precision are directly used instead of phase smoothed code observations. In addition, the DCB estimation is separated from the establishment of the ionospheric model which will limit the impacts of the SLM assumption impacts. The ionospheric model is established at every epoch for real time application. The method is validated with three different GNSS networks on a local, regional, and global basis. The results show that the method is feasible and effective, the real-time ionosphere and DCB results are very consistent with the IGS final products, with a bias of 1–2 TECU and 0.4 ns respectively.  相似文献   

16.
星载GNSS确定GEO卫星轨道的积分滤波方法   总被引:1,自引:0,他引:1  
采用星载全球导航卫星系统(GNSS)确定地球静止轨道(GEO),以解决目前应用星载全球定位系统(GPS)时导航卫星可见性差的问题。以风云卫星为例,分析了未来的GNSS相对于GEO卫星的可见性,针对GEO轨道上导航接收机采样间隔较长的问题,综合轨道积分和卡尔曼滤波方法的优点,提出了确定GEO卫星轨道的积分滤波方法。并利用STK软件仿真产生所需数据,用MATLAB对提出的算法编程并进行仿真验证,结果表明,提出的方法性能优越,定轨精度较高。  相似文献   

17.
星间链路新型信号体制设计   总被引:1,自引:0,他引:1  
从信息理论基础和通信技术源头开展创新,将高频谱效率的扩展二进制相移键控调制波形、极大提升解调前信噪比的数字冲击滤波器、自适应锁相解调方法和进一步提升解调性能的波形参数匹配技术有机融为一种全新而独特的高效通用调制解调体制,并结合导航星座星间链路的要求进行仿真。结果表明其特定信噪比下单位带宽可传输的信息速率bit/s/Hz/SNR(Signal Noise Ratio)综合指标显著超过现有对比技术,且码率、带宽和信噪比可与空间环境自适应。  相似文献   

18.
Due to the special geographical location and extreme climate environment, the polar regions (Antarctic and Arctic) have an important impact on global climate change. Atmospheric weighted mean temperature (Tm) is a crucial parameter in the retrieval of precipitable water vapor (PWV) from the zenith wet delay (ZWD) of ground-based Global Navigation Satellite System (GNSS) signal propagation. In this paper, the correlation between weighted mean temperature and surface temperature (Ts) is studied firstly. It is shown that the correlation coefficients between Tm and Ts are 0.93 in the Antarctic and 0.94 in the Arctic. The linear regression Tm model and quadratic function Tm model of the Antarctic and the Arctic are established respectively using the radiosonde profiles of 12 stations in the Antarctic and 58 stations in the Arctic from 2008 to 2015. The accuracies of the linear regression Tm model, the quadratic function Tm model and GPT2w Tm model which is a state-of-the-art global Tm model are verified using the radiosonde profiles from 2016 to 2018 in the Antarctic and Arctic. Root Mean Square (RMS) errors of the linear regression Tm model, the quadratic function Tm model and GPT2w Tm model in the Antarctic are 3.07 K, 2.87 K and 4.32 K respectively, and those in the Arctic are 3.53 K, 3.38 K and 4.82 K, which indicates that the quadratic function Tm model has a higher accuracy compared to linear regression Tm model, and the accuracies of the two regional Tm models are better than that of GPT2w Tm model in the polar regions. In order to better evaluate the accuracy of Tm in the PWV retrieval, the PWV values of radiosondes are used for comparisons as the reference value. The RMS errors of PWV derived from the two Tm models are similar for 1.28 mm in the Antarctic and 1 mm in the Arctic respectively. In addition, the spatial and temporal variation characteristics of Tm are analyzed in the polar regions by spectral analysis of Tm data using fast Fourier transform. The results show that the Tm has obvious seasonality and annual periodicity in the polar regions, and the maximum difference between warm season and cold season is about 63 K. After comparing and analyzing the influences of latitude, longitude and elevation on the Tm in the polar regions, it is found that latitude and elevation have a greater influence on the Tm than the longitude. As the latitude and elevation increase, the Tm decreases, and vice versa in the polar regions.  相似文献   

19.
卫星导航有源接收天线的噪声温度是导航接收系统的关键技术指标之一。针对卫星导航有源天线总体噪声温度无法测量的问题,研制了两台口面型噪声源,口面噪声源主要由辐射体、辐射体物理温度控制和温度测量仪等组成。两个口面噪声源在L和S波段分别提供高低温标准噪声温度,采用Y系数测量方法测量有源接收天线的总体天线噪声温度。测量了某卫星导航有源天线的总噪声温度,在(1.19~1.29) GHz的频率范围内,中心频率1.24 GHz上噪声温度测量结果为206 K,但是在1.266 GHz频率点上噪声温度测量大于4 000 K,说明天线与滤波器之间、滤波器与放大器之间存在设计问题或其它问题,体现出测量有源天线噪声温度的必要性。  相似文献   

20.
TIMED卫星探测的全球大气温度分布及其与经验模式的比较   总被引:4,自引:1,他引:3  
徐寄遥  纪巧   《空间科学学报》2006,26(3):177-182
利用TIMED卫星遥感探测的全球温度分布与NRLMSISE-00大气经验模式进行了对比研究.研究表明,在中间层下部以下的高度范围内,经验模式与卫星探测的大气温度分布有很好的一致性.但是比较发现,在中层顶区域,经验模式的计算结果与实测结果有较大的差异.卫星探测表明,在春分季节的低纬地区中层顶区存在稳定的逆温层,但是经验模式不能给出低纬地区春分季节中间层逆温层的分布特征.卫星观测表明在全球范围内中层顶有两个非常不同的高度,一个处于100km附近,另一个处于85km附近,但是经验模式不能给出这一中层顶高度的分布特征.同时在低热层,经验模式计算的温度分布与卫星遥感的探测结果有很大的差异.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号