首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This article proposes a new method for uncalibrated phase delay (UPD) estimation to improve the accuracy of precise point positioning (PPP), which uses only observation station data. This means that the station used to generate the UPDs is the same station to which they are applied. First, dual-frequency observation equations based on a raw PPP model are developed. Then, the UPDs are calculated from integer linear combinations of float ambiguities. Third, with the UPD corrections, the least-squares ambiguity decorrelation adjustment (LAMBDA) method is utilized to obtain the integer ambiguities. Since only observation station data are used for UPD estimation, the partial ambiguity resolution (PAR) method is adopted to increase the possibility of finding a subset of integer ambiguities. The UPD estimation and ambiguity resolution are performed in each epoch. To obtain the correct integer ambiguity, the ratio test and success rate (bootstrapping) are used to evaluate the estimated integer ambiguity. Finally, by treating the integer ambiguities as constants, fixed solutions can be obtained. Quality control is also applied throughout the entire data processing procedure to obtain high quality float and fixed solutions. Data from 22 stations of the International Global Navigation Satellite System (GNSS) Service (IGS) in East Asia on day of year (DOY) 206, 2017, are used to verify the feasibility of this method. The experimental results show that compared with the float solution, the proposed method can significantly improve the accuracy in the east, north and up directions by 24%, 21% and 18% for static PPP and 36%, 18% and 34% for dynamic PPP, respectively. However, the accuracy of the proposed method is still lower than that of the fixed solutions obtained by the PRIDE-PPPAR software, in which the fractional cycle bias is computed based on reference network data. These findings sufficiently show that the proposed method can offer better solution accuracy than the float solution. However, the quality of the UPDs estimated only from observation station data is not as good as that of the estimates obtained based on reference network data.  相似文献   

2.
Integer ambiguity fixing with uncalibrated phase delay (UPD) products can significantly shorten the initialization time and improve the accuracy of precise point positioning (PPP). Since the tracking arcs of satellites and the behavior of atmospheric biases can be very different for the reference networks with different scales, the qualities of corresponding UPD products may be also various. The purpose of this paper is to comparatively investigate the influence of different scales of reference station networks on UPD estimation and user ambiguity resolution. Three reference station networks with global, wide-area and local scales are used to compute the UPD products and analyze their impact on the PPP-AR. The time-to-first-fix, the unfix rate and the incorrect fix rate of PPP-AR are analyzed. Moreover, in order to further shorten the convergence time for obtaining precise positioning, a modified partial ambiguity resolution (PAR) and corresponding validation strategy are presented. In this PAR method, the ambiguity subset is determined by removing the ambiguity one by one in the order of ascending elevations. Besides, for static positioning mode, a coordinate validation strategy is employed to enhance the reliability of the fixed coordinate. The experiment results show that UPD products computed by smaller station network are more accurate and lead to a better coordinate solution; the PAR method used in this paper can shorten the convergence time and the coordinate validation strategy can improve the availability of high precision positioning.  相似文献   

3.
为了组合导航的载波相位模糊度固定,将目前在GPS中常用的模糊度固定方法--最小二乘降相关平差(LAMBDA)法直接应用于GPS/Galileo组合模糊度固定,发现其搜索空间的确定方法并不能很好地适应GPS/Galileo组合中模糊度维数较高的情况。通过对常规LAMBDA搜索空间确定方法的分析比较,在传统方法的基础上提出了一种专门针对高维模糊度固定的搜索空间确定方法--修正法确定模糊度搜索空间。通过对修正法进行仿真试验,证明该方法能保证在GPS/Galileo组合定位模式下实际备选模糊度个数基本与预先设定的备选模糊度个数一致,进而能在不降低模糊度固定成功率的基础上有效提高LAMBDA模糊度固定的搜索效率,其性能优于传统的模糊度搜索空间确定方法。  相似文献   

4.
利用GPS(Global Positioning System)相位观测进行动态定位的主要困难就是法方程不适定问题(秩亏或病态问题),导致模糊度浮动解及其协方差阵不准,以此构造的模糊度搜索范围比较大,使得模糊度的搜索非常困难.提出利用Doppler高精度测速预报近似坐标并对其附加约束,解决法方程求逆中的不适定问题,提高模糊度浮动解及其方差阵的准确性,缩小模糊度的搜索范围,提高模糊度搜索的成功率.结果表明,短基线情况,新方法在模糊度动态解算中取得了明显效果.   相似文献   

5.
GNSS (Global Navigation Satellite Systems)-based attitude determination is an important field of study, since it is a valuable technique for the orientation estimation of remote sensing platforms. To achieve highly accurate angular estimates, the precise GNSS carrier phase observables must be employed. However, in order to take full advantage of the high precision, the unknown integer ambiguities of the carrier phase observables need to be resolved. This contribution presents a GNSS carrier phase-based attitude determination method that determines the integer ambiguities and attitude in an integral manner, thereby fully exploiting the known body geometry of the multi-antennae configuration. It is shown that this integral approach aids the ambiguity resolution process tremendously and strongly improves the capacity of fixing the correct set of integer ambiguities. In this contribution, the challenging scenario of single-epoch, single-frequency attitude determination is addressed. This guarantees a total independence from carrier phase slips and losses of lock, and it also does not require any a priori motion model for the platform. The method presented is a multivariate constrained version of the popular LAMBDA method and it is tested on data collected during an airborne remote sensing campaign.  相似文献   

6.
PPP (Precise Point Positioning) is a GNSS (Global Navigation Satellite Systems) positioning method that requires SSR (State Space Representation) corrections in order to provide solutions with an accuracy of centimetric level. The so-called RT-PPP (Real-time PPP) is possible thanks to real-time precise SSR products, for orbits and clocks, provided by IGS (International GNSS Service) and its associate analysis centers such as CNES (Centre National d'Etudes Spatiales). CNES SSR products also enable RT-PPP with integer ambiguity resolution. In GNSS related literature, PPP with ambiguity resolution (PPP-AR) in real-time is often referred as PPP-RTK (PPP – Real Time Kinematic). PPP-WIZARD (PPP - With Integer and Zero-difference Ambiguity Resolution Demonstrator) is a software that is made available by CNES. This software is capable of performing PPP-RTK. It estimates slant ionospheric delays and other GNSS positioning parameters. Since ionospheric effects are spatially correlated by GNSS data from active networks, it is possible to model and provide ionospheric delays for any position in the network coverage area. The prior knowledge ionospheric delays can reduce positioning convergence for PPP-RTK users. Real-time ionospheric models could benefit from highly precise ionospheric delays estimated in PPP-AR. In this study, we demonstrate that ionospheric delays obtained throughout PPP-AR estimation are actu ally ionospheric observables. Ionospheric observables are biased by an order of few meters caused by the receiver hardware biases. These biases prohibit the use of PPP-WIZARD ionospheric delays to produce ionospheric models. Receiver biases correction is essential to provide ionospheric delays while using PPP-AR based ionospheric observables. In this contribution, a method was implemented to estimate and mitigate receiver hardware biases influence on slant ionospheric observables from PPP-AR. In order to assess the proposed approach, PPP-AR data from 12 GNSS stations were processed over a two-month period (March and April 2018). A comparison between IGS ionospheric products and PPP-AR based ionospheric observables corrected for receiver biases, resulted in a mean of differences of −39 cm and 51 cm standard deviation. The results are consistent with the accuracy of the IGS ionospheric products, 2–8 TECU, considering that 1 TECU is ~16 cm in L1. In another analysis, a comparison of ionospheric delays from 5 pairs of short baselines GNSS stations found an agreement of 0.001 m in mean differences with 22 cm standard deviation after receiver biases were corrected. Therefore, the proposed solution is promising and could produce high quality (1–2 TECU) slant ionospheric delays. This product can be used in a large variety of modeling approaches, since ionospheric delays after correction are unbiased. These results indicate that the proposed strategy is promising, and could benefit applications that require accuracy of 1–2 TECU (~16–32 cm in L1).  相似文献   

7.
The integer ambiguity resolution (AR) of carrier phase is significant for Global Navigation Satellite System (GNSS) precise positioning. However, in kinematic case, single-epoch AR methods based on alone GNSS are usually not reliable due to the instable pseudorange accuracy. Moreover, the computation of classical AR method Least Squares Ambiguity Decorrelation Adjustment (LAMBDA) is large. Thus, the inertial measurement unit (IMU) is introduced, a new inertial-aided AR method that directly rounds the float ambiguity of BeiDou triple-frequency combined observations, which is characterized by long wavelength, low carrier-phase noise and ionospheric delay, is proposed. The mathematical model of the new method is derived first. Then the impacts of the carrier-phase noise, ionospheric delay and inertial navigation system (INS) position error on the AR success ratio of combined observation are analyzed through probabilistic approach. Based on above investigation, the combinations (0, ?1, 1), (1, 4, ?5) and (4, ?2, ?3) are selected to resolve the original ambiguity. A vehicular integrated navigation test is performed to demonstrate the proposed method. The results show that the average AR success ratios of the three selected combinations, whose float ambiguity errors are 0.041, 0.146, 0.279 cycle respectively, are above 97.25% without regard to low-elevation C05. With respect to positioning accuracy based on our AR method when compared with IE software, the east, north, up error RMS of position are 0.042, 0.024, 0.069 m, respectively. In terms of the AR recover after the BeiDou signals outage, as long as 62 s BeiDou signal complete outage, all the ambiguities of all satellites could be re-fixed immediately. Besides, during the 90 s signals partial outage, the AR is not influenced by the position error, since the float ambiguity errors are all below half-cycle. The research of this contribution demonstrates the effectiveness of the proposed new method, which indicates it is applicable to kinematic positioning, even in BDS degraded and denied environments.  相似文献   

8.
主要分析了GPS载波相位整周模糊度LAMBDA求解算法,通过数据模拟测试来验证该算法在DSP上的工作状况。仿真计算证明,在DSP上实现LAMBDA算法可以满足GPS实时动态定位的要求。  相似文献   

9.
Integer ambiguity resolution in Precise Point Positioning (PPP) can improve positioning accuracy and reduce convergence time. The decoupled clock model proposed by Collins (2008) has been used to facilitate integer ambiguity resolution in PPP, and research has been conducted to assess the model’s potential to improve positioning accuracy and reduce positioning convergence time. In particular, the biggest benefits have been identified for the positioning solutions within short observation periods such as one hour. However, there is little work reported about the model’s potential to improve the estimation of the tropospheric parameter within short observation periods. This paper investigates the effect of PPP ambiguity resolution on the accuracy of the tropospheric estimates within one hour.  相似文献   

10.
Obtaining reliable GNSS uncalibrated phase delay (UPD) or integer clock products is the key to achieving ambiguity-fixed solutions for real-time (RT) precise point positioning (PPP) users. However, due to the influence of RT orbit errors, the quality of UPD/integer clock products estimated with a globally distributed GNSS network is difficult to ensure, thereby affecting the ambiguity resolution (AR) performance of RT-PPP. In this contribution, by fully utilising the consistency of orbital errors in regional GNSS network coverage areas, a method is proposed for estimating regional integer clock products to compensate for RT orbit errors. Based on Centre National d’Études Spatiales (CNES) RT precise products, the regional GPS/BDS integer clock was estimated with a CORS network in the west of China. Results showed that the difference between the estimated regional and CNES global integer clock/bias products was generally less than 5 cm for GPS, whereas clock differences of greater than 10 cm were observed for BDS due to the large RT orbit error. Compared with PPP using global integer clock/bias products, the AR performance of PPP using the regional integer clock was obviously improved for four rover stations. For single GPS, the horizontal and vertical accuracies of ambiguity-fixed PPP solutions were improved by 56.2% and 45.3% on average, respectively, whereas improvements of 67.5% and 50.5% in the horizontal and vertical directions, respectively, were observed for the combined GPS/BDS situation. Based on a regional integer clock, the RMS error of a kinematic ambiguity-fixed PPP solution in the horizontal direction could reach 0.5 cm. In terms of initialisation time, the average time to first fix (TTFF) in combined GPS/BDS PPP was shortened from 18.2 min to 12.7 min. In view of the high AR performance realised with the use of regional integer clocks, this method can be applied to scenarios that require high positioning accuracy, such as deformation monitoring.  相似文献   

11.
GNSS-based precise relative positioning between spacecraft normally requires dual frequency observations, whereas attitude determination of the spacecraft, mainly due to the stronger model given by the a priori knowledge of the length and geometry of the baselines, can be performed precisely using only single frequency observations. When the Galileo signals will come available, the number of observations at the L1 frequency will increase as we will have a GPS and Galileo multi-constellation. Moreover the L1 observations of the Galileo system and modernized GPS are more precise than legacy GPS and this, combined with the increased number of observations, will result in a stronger model for single frequency relative positioning. In this contribution we will develop an even stronger model by combining the attitude determination problem with relative positioning. The attitude determination problem will be solved by the recently developed Multivariate Constrained (MC-) LAMBDA method. We will do this for each spacecraft and use the outcome for an ambiguity constrained solution on the baseline between the spacecraft. In this way the solution for the unconstrained baseline is bootstrapped from the MC-LAMBDA solutions of each spacecraft in what is called: multivariate bootstrapped relative positioning. The developed approach will be compared in simulations with relative positioning using a single antenna at each spacecraft (standard LAMBDA) and a vectorial bootstrapping approach. In the simulations we will analyze single epoch, single frequency success rates as the most challenging application. The difference in performance for the approaches for single epoch solutions, is a good indication of the strength of the underlying models. As the multivariate bootstrapping approach has a stronger model by applying information on the geometry of the constrained baselines, for applications with large observation noise and limited number of observations this will result in a better performance compared to the vectorial bootstrapping approach. Compared with standard LAMBDA, it can reach a 59% higher success rate for ambiguity resolution. The higher success rate on the unconstrained baseline between the platforms comes without extra computational load as the constrained baseline(s) problem has to be solved for attitude determination and this information can be applied for relative positioning.  相似文献   

12.
The overlapping carrier frequencies L1/E1, L5/E5a and B2/E5b from GPS/Galileo/BDS allow inter-system double-differencing of observations, which shows a clear advantage over differencing of the observations of each constellation independently. However, the inter-system biases destroy the integer nature of the inter-system double-differencing ambiguities. Two methods of direct rounding and parameter estimation are used to determine the ISB value. By analyzing data collected from Curtin University from 2015 to 2018, the phase and code inter-system bias (ISB) are related to the receiver type, firmware version and the selected overlapping frequency. Upgrade of receiver firmware version results in changes of ISB values. For example, the upgrade of Javad firmware in Dec, 15, 2017 causes the difference of 0.5 cycles ISB between BDS GEO and non-GEO satellites. By comparing the three dynamic models which include white noise process, random walk process, and random constant in the parameter estimation method, the ISB determined by the random constant model is consistent with the value obtained by the direct rounding method. After the calibration of ISBs, the performances of tightly combined positioning are assessed. The success rate of ambiguity resolution and accuracy of positioning for the tight combination (TC) are significantly improved in comparison with that for the loose combination (LC) over short baselines. For L5/E5a, on which only few satellites can be observed, the maximum increase in success rates of ambiguity resolution can reach 31.7%, i.e., from 54.9% of LC to larger than 86.6% of TC, and the positioning accuracies can even be increased by 0.13 m, i.e., from 0.208 of LC to 0.074 m of TC in East direction for the mix-receiver TRIMBLE NETR9-SEPT POLARX4 in 2018.  相似文献   

13.
短基线约束条件下的整周模糊度二维搜索算法   总被引:1,自引:0,他引:1  
通过对基线仰角和方位角的搜索,在二次残差最小的条件下确定整周模糊度。建立了搜索模型,论述了搜索原理及其应用的具体过程,推导了粗搜索和精搜索的步长。通过试验与最小二乘降相关平差(Least-squares Ambiguity Decorrelation Adjustment,LAMBDA)算法进行分析比较,验证了新方法的正确性及可靠性,得到了1cm的基线精度,0.6°的仰角和0.4°的方位角精度,且算法简单,搜索效率高,适用于载体的姿态测量。  相似文献   

14.
Integer ambiguity resolution in precise point positioning (PPP) can shorten the initialization and re-initialization time, and ambiguity-fixed PPP solutions are also more reliable and accurate than ambiguity-float PPP solutions. However, signal interruptions are unavoidable in practical applications, particularly while operating in urban areas. Such signal interruptions can cause discontinuity of carrier phase arc, which introduces new integer ambiguities. Usually it will take approximately 15 min of continuous tracking to a reasonable number of satellites to fix new integer ambiguities. In many applications, it is impractical for a PPP user to wait for such a long time for the re-initialization. In this paper, a method for rapid ambiguity fixing in PPP is developed to avoid such a long re-initialization time. Firstly, the atmospheric delays were estimated epoch by epoch from ambiguity-fixed PPP solutions before the data gap or cycle slip occurs. A random walk procedure is then applied to predict the atmospheric delays accurately over a short time span. The predicted atmospheric delays then can be used to correct the observations which suffer from signal interruptions. Finally, the new ambiguities can be fixed with a distinct WL-LX-L3 (here LX denotes either of L1, L2) cascade ambiguity resolution strategy. Comprehensive experiments have demonstrated that the proposed method and strategy can fix zero-difference integer ambiguities successfully with only a single-epoch observation immediately after a short data gap. This technique works even when all satellites are interrupted at the same time. The duration of data gap bridged by this technique could be possibly extended if a more precise atmospheric delay prediction is found or on-the-fly (OTF) technology is applied. Based on the proposed method, real-time PPP with integer ambiguity fixing becomes more feasible in practice.  相似文献   

15.
This paper proposes a precise line-of-sight (LOS) vector estimation using an inter-satellite radio frequency system. GNSS-like technology is inherited such that the ranging signals are locally generated inside the formation. However, the approach differs from the standard GNSS model usage in that the LOS vector to be of a unit length is fully explored as a priori constraint for the carrier phase integer ambiguity resolution. The constraint is lumped to the mapping process from the real-valued ambiguities to the integers by what is called validation or subset ambiguity bounding. These two approaches have the same rules of regarding the constraint as a gateway to accept or reject the ambiguity candidates, but differ by using “all-ambiguity-set” and “subset-ambiguity”. Both show remarkable improvement with up to 80% lower integer fixing failure rates than without treating the constraint. Validation provides a slightly better performance than the subset ambiguity bounding in terms of the integer fixing failure rates and the computational efficiency. The predefined tolerance regions that are critical for these two methods are analytically determined as function of the carrier noise. The paper also introduces a LOS dependent ambiguity dilution of precision (ADOPLOS) measure that can serve as a metric to characterize the expectation of being able to successfully resolve the ambiguities. The region of ADOPLOS lower than 0.21 is empirically summarized as the safe region where the integer fixing failure rates are less than 1%. A closed form of the ADOPLOS is derived which is able to capture the impact of the various factors. Antenna baseline geometries and multiple frequencies in the form of an ultra-BOC signal structure are demonstrated as the most important influencing factors. With multiple properly arrayed antennas and using ultra-BOC structure, instantaneous ambiguity resolution can be achieved and the LOS accuracy can reach millimeter level.  相似文献   

16.
To ensure the compatibility and interoperability with modernized GPS, Galileo satellites are capable of broadcasting navigation signals on carrier phase frequencies that overlap with GPS, i.e., GPS/Galileo L1-E1/L5-E5a. Moreover, the GPS/Galileo L2-E5b signals have different frequencies with wavelength differences smaller than 4.2?mm. Such overlapping and narrowly spaced signals between GPS and Galileo bring the opportunity to use the tightly combined double-differenced (DD) model for precise real-time kinematic (RTK) positioning, resulting in improved performance of ambiguity resolution and positioning with respect to the classical standard or loosely combined DD model. In this paper, we focus on the model and performance assessment of tightly combined GPS/Galileo L1-E1/L2-E5b/L5-E5a RTK for short and long baselines. We first investigate the tightly combined GPS/Galileo DD observational model for both short and long baselines with simultaneously considering the GPS/Galileo overlapping and non-overlapping frequencies. Particularly, we introduce a reparameterization approach to solve the rank deficiency that caused by the correlation between the DISB parameters and the DD ionospheric parameters for both overlapping and non-overlapping frequencies. Then we present performance assessment for the tightly combined GPS/Galileo RTK model with real-time estimation of the differential inter-system bias (DISB) parameters for short and long baselines in terms of ratio value, ambiguity dilution of precision (ADOP), ambiguity conditional number, decorrelation number, search count, empirical success rate, time-to-first-fix (TTFF), and positioning accuracy. Results from both static and kinematic experiments demonstrated that compared to the loosely combined model, the tightly combined model can deliver improved performance of ambiguity resolution and precise positioning with different satellite visibility. For the car-driven short baseline experiment with 10° elevation cut-off angle, the tightly combined model can not only significantly increase the ratio value by approximately 27.5% (from 16.0 to 20.4), but also reduce the ambiguity ADOP, the conditional number, and the search count in LAMBDA by approximately 22.2% (from 0.027 to 0.021 cycles), 14.9% (from 199.2 to 169.6), and 25.4% (from 150.1 to 112.0), respectively. Comparable decorrelation number, empirical success rate, and positioning accuracy are also obtained. For the car-driven long baseline experiment, it is also observed that the ambiguity resolution performance in terms of the ratio value, the decorrelation number, the condition number, and the search count are significantly improved by approximately 18.5% (from 2.7 to 3.2), 22.0% (from 0.186 to 0.227), 55.9% (from 937.6 to 413.7), and 10.3% (from 43.8 to 39.3), respectively. Moreover, comparable ADOP, empirical success rate, and positioning accuracy are obtained as well. Additionally, the TTFF can be reduced (from 54.1 to 51.8 epochs with 10° elevation cut-off angle) as well from the results of static experiments.  相似文献   

17.
Next-generation Very Long Baseline Interferometry (VLBI) system designs are aiming at 1 mm global position accuracy. In order to achieve this, it is not only necessary to deploy improved VLBI systems, but also to develop analysis strategies that take full advantage of the observations taken. Since the new systems are expected to incorporate four independent radio frequency bands, it should be feasible to resolve phase ambiguities directly from post-correlation data, providing roughly an order of magnitude improvement in precision of the delay observable. As the unknown ambiguities are of integer nature, it is discussed here how they the can be resolved analytically using algorithms which have been developed for Global Navigation Satellite System (GNSS) applications. Furthermore, it will be shown that ionosphere contribution and source structure effects, so-called core-shifts, can be solved simultaneously with the delay, which is the main geodetic observable for follow-on analysis. In order to verify the proposed algorithm, simulated observations were created using parameters from actual design studies. It is shown that, even in the case of low signal-to-noise ratio observations, reliable phase ambiguity resolution can be achieved and it is discussed how the integer ambiguity recovery depends on the number of observations and signal-to-noise ratio.  相似文献   

18.
This paper proposes a real-time kinematic (RTK) model that uses one common reference satellite for the Galileo system with four frequency observations. In the proposed model, the double-differenced (DD) pseudorange and carrier phase biases among the different frequencies are estimated as unknown parameters to recover the integer features of the DD ambiguities among the different frequencies for ambiguity resolution and precise positioning. Analysis results show that the E5a, E5b, and E5 frequencies have virtually the same performance in terms of the positioning accuracy, observation residuals, and ratio values of ambiguity resolution. However, the E1 frequency performs worse than the E5a, E5b, and E5 frequencies. The RTK results for the combination of multiple frequencies are much better than those for a single-frequency observation, the coordinates’ standard deviation is improved about 20–30%, and the ambiguity fix time is improved about 10%.  相似文献   

19.
现有研究主要是关于频率分集阵列(FDA)基于阵元发射窄带条件下单载频信号的假设而展开的,缺乏对线性调频(LFM)信号是否适用于FDA问题的研究。考虑到基于模糊函数的优化是雷达波形设计的重要手段,在建立FDA数据模型的基础上,建立线阵发射、单天线接收模型下的FDA负型模糊函数,系统分析其主要特性。在此基础上,仿真分析了基于矩形脉冲、线性调频信号以及采用不同非线性频控函数的FDA负型模糊函数特性,对比了采用不同非线性频控函数的FDA的目标距离-角度二维联合估计性能。仿真结果在验证FDA模糊函数建立正确性的同时,得出采用正弦频控函数的FDA性能最优的结论。从而为基于模糊函数的复杂信号FDA波形设计以及基于FDA方向图解耦技术的发射波形设计奠定了重要基础。   相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号