首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 375 毫秒
1.
根据中国不同地点臭氧探空数据,研究气球炸点臭氧浓度定值(CMR)法、卫星(SBUV和MLS)纬向平均法确定的剩余臭氧Ωres及其对订正因子Cref的影响,同时检验臭氧垂直分布对Cref的贡献.结果显示: CMR法对气球炸点高度依赖性明显,且易高估Ωres使Cref整体低于100%;卫星纬向平均Ωres对气球炸点高度不敏感,但在中国东部的臭氧总量高值区或青藏高原及低纬度臭氧低值地区,Ωres呈现近10DU以上低值,这是经向臭氧总量及其垂直分布差异在卫星遥感数据上的反映.地面到100hPa的对流层臭氧(Ωtro),100~10hPa的平流层臭氧(Ωstr)以及10hPa以上的Ωres对Cref贡献平均分别为(16±3.4)%,(65±2.3)%,(19±3.3)%.表明基于Cref评估或订正探空仪平流层臭氧测值时,需考虑对流层臭氧及确定Ωres方法的影响.卫星纬向平均法,特别是近似实测的SBUV臭氧廓线的值适用于确定Ωres.   相似文献   

2.
目前太阳对地球能量平衡影响的研究大都是以太阳总辐射通量密度作为输入参数的. 本文以美国航空航天局(National Aeronautics and Space Administration,NASA)太阳辐射与气候实验项目的卫星实测数据为基础,对太阳上升相(2010年上半年)和下降相(2007年12月)期间太阳光谱变化对地球能量平衡的影响进行了研究. 结果表明,2010年上半年较强的太阳总辐射通量密度主要是由紫外及红外波段的能量增强引起的,其在200~400nm 和760~4000nm波段内的平均能量分别增加了0.11%和0.05%,而在 400~760nm可见光区的能量却呈减小趋势,平均减小量为0.05%. 通过对MLS2.2全球臭氧日数据进行再分析后发现,相对于2007年12月,2010年上半年平流层臭氧浓度也有所增加,其中在太阳紫外辐射呈现较大增强的2月和3月,其臭氧增量也相对较大,最大值分别出现在33km和40km处,值为0.6mL·m-3和0.62mL·m-3. 因此,可见光区能量减弱与平流层臭氧浓度增加的双重削弱作用致使虽然2010年上半年的太阳总辐射通量密度较大,但是到达对流层顶的太阳辐射却有所减小,最大减小量出现在3月,值为0.15W·m-2. 这一结果说明,太阳活动或总辐射通量密度的增强也有可能对地球对流层系统起到冷却作用.   相似文献   

3.
对流层顶变化对上对流层/下平流层臭氧分布的影响   总被引:12,自引:0,他引:12  
上对流层和下平流层(UT/LS),位于8-25km高度之间,是大气中一个很特殊的区域.大部分的臭氧分布在下平流层,在下平流层臭氧的含量发生一个很小的变化,就会对气候和地面的紫外辐射产生很大的影响.而作为气象参数的对流层顶,是充分混合、缺乏臭氧的上对流层和层结稳定、臭氧丰富的下平流层之间的边界或过渡层,其变化对臭氧总量和分布有直接和明显的影响.本文使用二维模式模拟研究对流层顶变化对臭氧在UT/LS分布的影响.模拟结果表明对流层顶的季节变化对UT/LS的臭氧分布有明显的影响,臭氧的局地变化可以超过10%在冬季北半球中纬度对流层顶高度升高1km时,模式结果表明对臭氧分布的影响比较显著,局地变化可超过6%,但是对臭氧总量的影响较小,变化不超过5DU,小于观测资料统计分析的结果。  相似文献   

4.
利用SABER探测器2002—2017年超过一个太阳活动周的数据,以大气垂直方向上40~60km的最大温度作为平流层顶温度(Tsp),分析50°S—50°N Tsp的时空分布特征.结果表明:Tsp具有明显的纬度特征和季节特征,在赤道和南北半球夏季温度较高,而在南北半球冬季的40°—50°纬度附近温度有最低值.再利用EOF方法分析Tsp,发现其第一模态的解释率达91%,且时间系数与平流层顶高度相关性最大,为-0.75,与平流层顶臭氧体积混合比相关性约0.49,与日地距离相关性为0.44,与太阳活动性(太阳活动指数,太阳黑子数)的相关性约0.33.依据该相关关系,进一步分析各变量原始场,发现Tsp和平流层顶臭氧体积混合比的纬度变化近似相反;与日地距离的季节变化有明显的负相关,约-0.81,且这种相关性与日地距离有弱的正相关关系;年平均Tsp在2002—2017年的变化约为2K,与F10.7的相关系数为0.6,在南北纬20°附近与太阳活动指数F10.7的相关性最大,约0.74.   相似文献   

5.
太阳质子事件与大气臭氧扰动   总被引:1,自引:0,他引:1  
本文利用统计分析方法分析了1960至1982年间1级以上的太阳质子事件与四个不同地理纬度大气臭氧含量的相互关系.分析结果表明,对于中、低纬度地区,1、2级太阳质子事件基本上不影响大气臭氧含量,只有3、4级的大事件才对臭氧含量产生扰动,而且具有明显的纬度效应;对于极区,1级以上的太阳质子事件就能对臭氧含量产生影响,随着质子事件级别的增高,对臭氧含量的扰动也加大.通常,太阳质子事件发生的当天,臭氧含量开始下降,在第4天下降达最小值,整个扰动持续数日.由太阳质子事件扰动大气臭氧明显的纬度效应证明了太阳质子事件的确是使大气臭氧含量变化的重要因素.此外,分析结果表明,冬天出现的太阳质子事件对臭氧的扰动要大于夏天质子事件对臭氧的扰动.这些结果给出了太阳质子事件影响大气臭氧的一个总轮廓,而且从理论上得到了较好的解释.   相似文献   

6.
选用芬兰中子堆监测站从lop年7月至1989年3月的宇宙线强度月平均曲线数据,和在相对应期间我国境内海拉尔等4个高空气象观测站的30hPa和100hPa等位势高度上常规气温观测月平均资料,经统计分析,取得初步结果:低平流层气温与银河系宇宙线辐射强度之间呈现负相关的特性;与银河系宇宙线辐射强度峰区和谷区相对应会在低平流层中引起幅值为2-3℃的温度变化;不同纬度观测站所得观测数据表明,上述增温幅值随纬度降低而减少。   相似文献   

7.
TIMED/SABER与AURA/MLS临近空间探测温度数据比较   总被引:1,自引:1,他引:0       下载免费PDF全文
利用AURA/MLS数据(V4.2)和TIMED/SABER数据(V2.0)对20~92km高度的大气温度进行比较分析,计算AURA/MLS数据与TIMED/SABER数据的温度绝对偏差,并分析平均温度偏差在不同季节中随经度、纬度和高度的变化特征.结果表明:20~80km高度的平均温度偏差在±6K以内,相对偏差在3%以内;80~90km高度平均温度偏差减小至-10K以下,相对偏差在9%以内.中低纬度地区平均温度偏差廓线的变化趋势一致,从20km高度的-3K左右的负偏差逐渐增加,在45~50km高度的平流层顶处有较明显的3K左右的正偏差峰值.平均温度偏差随纬度变化明显,随经度变化很小.研究结果可为卫星数据的应用提供参考依据.   相似文献   

8.
平流层飞艇蒙皮材料织物纤维拔出过程分析   总被引:1,自引:0,他引:1  
平流层飞艇高度以及昼夜温差改变,都将引起飞艇内外压差有很大的变化.飞艇蒙皮承力层纱线拔出是其撕裂现象的细观过程,对飞艇耐压能力有着重要的影响.对某平流层飞艇蒙皮材料织物层进行细观力学建模,通过研究纱线拔出过程力的变化,并与试验结果对比,指出整个拔出过程可以分为近似线性增长阶段和振荡阶段,两阶段过渡点纱线拔出力的大小对于蒙皮材料撕裂扩展性能有着重要意义.同时,平流层紫外和臭氧等复杂环境,通过对织物纱线表面老化,降低其表面性能,从而使得最大拔出力减小,飞艇耐压能力降低.  相似文献   

9.
利用美国NCAR最新的化学-气候耦合模式WACCM-3对平流层风场、温度场以及平流层臭氧等多种微量气体成分(O3, CH4, N2O, H2O, HCl, HNO3)的季节变化进行了数值模拟, 并使用ECMWF再分析资料与美国UARS卫星 搭载的HALOE, MLS, CLAES等探测器的观测资料, 对模式输出的动力、热力及化学成分浓度的气候平均值进行了验证. 结果表明, 在气候平均海表温度值驱动下, WACCM-3模式能够很好地再现ECMWF资料中平流层纬向平均风场与温度场的季节变化. 模拟结果中平流层化学成分的经向-垂直分布及其季节变化与卫星观测结果基本一致. 模式的动力、热力场在极地平流层以及热带对流层顶等区域存在一定的偏差. 这些偏差对于微量气体成分分布 的模拟具有一定影响, 特别是南半球冬(7月)、春(10月)季节南极平流层低层极夜 急流偏强, 造成极地地区附近的输送障碍增强, 从而导致CH4, N2O, H2O浓度比观测偏低. 此外, WACCM-3缺少热带平流层风场的准两年振荡(QBO) 机制, 这对于热带平流层东风急流以及低纬度平流层O3, CH4, N2O, H2O等成分经向输送的模拟结果也有一定影响.   相似文献   

10.
空间天气对地球及近地空间具有重要影响,大的空间天气事件对中上层大气动力学和成分具有不同的影响。利用全大气耦合模式WACCM,针对太阳耀斑、太阳质子、地磁暴三类事件,以太阳活动平静期2015年5月10-14日的GEOS-5数据为模式背景场,通过F10.7、离子产生率、Kp及Ap指数设置,分别模拟三类事件对临近空间大气温度、密度和臭氧的影响。结果表明耀斑事件在三类事件中对临近空间大气温度和密度的影响最为显著。平流层大气温度增加是由耀斑辐射增强引起平流层臭氧吸收紫外辐射发生的光化学反应所致,耀斑事件引起平流层和低热层温度增加约为2~3 K,低热层大气相对密度增加在6%以内;太阳质子事件及磁暴事件主要影响低热层,但太阳质子事件和磁暴事件对低热层温度扰动不大于1 K。  相似文献   

11.
The variations of total ozone, stratospheric temperature and tropopause temperature are presented for the past 3 solar cycles for the summer months of the northern hemisphere. Ground-based, 30-year total column ozone series, filtered from its seasonal, QBO, El Nino/Southern Oscillation (ENSO) and trend components are found to be correlated to the 11-year solar cycle. Model calculations with a 2D chemical transport model are consistent with the observations. Mean stratospheric temperature variations, between levels 100 and 10 hPa, show also the same variation, correlated with the observed 11-year solar cycle, and the tropopause temperature increases in the same manner, in response to a warmer stratosphere during solar maxima.  相似文献   

12.
Umkehr, ozonesonde and satellite observations were used to determine the height/latitude distribution of the amplitude and phase of the periodic components of the variation of the ozone mixing ratio in the middle and upper stratosphere. The amplitude of the first (annual) harmonic is small in the subtropics and increases to a maximum at polar latitudes. It also increases with height in the mid and upper stratosphere to an apparent maximum just below the stratopause. The second (semi-annual) harmonic has an amplitude that is largest in tropical regions and in subpolar regions at a level of about 40 km. There seems to be very little ozone variation above 30 km with dominant periods close to the quasi-biennial period of total ozone observed in the tropics. The percent of the total variance of the ozone mixing ratio accounted for by the first harmonic is larger than 60 percent at all heights from 20° – 60° latitude in both hemispheres (except near 40 km in the Northern Hemisphere). The percent of the total variance accounted for by the second harmonic is maximum at a height of about 40 km in the tropics and at subpolar latitudes where, as mentioned, its amplitude is also largest.The phase of the first harmonic shows a marked transition from a winter/spring maximum below 30 km to a summer maximum at 30 km, changing rapidly to a maximum in winter in both hemispheres. The regions of minimum amplitude of the annual variation and the marked phase shifts with height both indicate the separation by levels of the dominant physical control mechanisms on the periodic changes of the ozone mixing ratio in the middle and upper stratosphere. Changes below 30 km respond primarily to dynamic influences in the lower stratosphere while above 30 km the periodic variations result mainly from photochemical processes. Above 40 km these variations are strongly temperature dependent.  相似文献   

13.
The chemistry-climate model SOCOL has been applied for the study of ozone and temperature anomalies during 1979–1993. Temperature and ozone anomalies have been obtained for a set of model runs forced by all major stratospheric forcing mechanisms. Forcings have been prescribed separately and together to assess their individual influence on stratospheric ozone and temperature. The results of these simulations have been compared to available satellite data. The model captures well ozone depletion and cooling in the upper stratosphere due to increases in the abundance of greenhouse gases and ozone depleting substances in the atmosphere. In the lower stratosphere, the model reproduces the warming over tropical and middle latitudes caused by the El-Chichon and Pinatubo eruptions. However, the simulated ozone response is overestimated in comparison with SAGE data. The best agreement with observations has been obtained for the run with all forcings included. This emphasizes the importance of the volcanic and solar forcings for the correct reproduction of observed trends. Comparison of near-global total ozone anomalies confirms an overestimation of ozone depletion just after volcanic eruptions, while the overall agreement with the model is fairly good.  相似文献   

14.
Variations of stratospheric temperature are connected with changes of the solar wind dynamic pressure. This effect could be explained in the framework of the global electric circuit concept. The energy of the solar wind modulates the energy balance of the global electric circuit where the stratosphere could be one of its other elements. The conductivity of the stratosphere in the polar region is equal to and sometimes more than the conductivity of the ground surface covered by ice or permafrost. Re-distribution of the global electric circuit currents between the stratosphere and the ground surface determines a different relation between solar wind dynamics and variations of the stratospheric temperature during different seasons.  相似文献   

15.
本文用Nimbus7 SAM卫星观测的温度资料,分析了突然增温事例中地面地形不同的四个子午圈剖面内的温度分布及变化过程。结果表明,高山地区、平原和海面上空的行星波加热和低平流层突然增温有很大的差别。地形的影响是明显的。   相似文献   

16.
利用2008年12月至2009年4月的MERRA再分析数据资料,对2009年1月下旬北半球高纬平流层发生的强增温事件以及与之相关的行星波活动进行了研究.谱分析发现,SSW发生前后极区平流层内准16天行星波活动显著.利用二维谐波拟合法分别拟合温度场准16天波4个波模(W1,W2,E1,E2)的振幅和相位,结果表明:背景西风减弱时四个波模的振幅均有不同程度的增大,且都在50°-80°N范围内的平流层中上层达到最大值;准16天W2波的增幅最大且辐合最强烈,其引起的背景流最大西风减速超过4m·-1·d-1,说明准16天W2波在该次增温事件中占主导地位;行星波传播与零风线移动关系密切,准16天W2波在中高纬地区垂直向上传播并近似呈现经向驻波结构,然后分别向极点和赤道两个方向传播,这表明中高纬地区可能是行星波的一个源区.   相似文献   

17.
The results of a cross-spectral analysis between monthly mean temperatures at 100 mb, 50 mb and 30 mb over the equator and the corresponding monthly mean BUV total ozone at different latitude zones are presented for the period 1970–1977. Significant squared coherences between total ozone and 50 mb equatorial temperatures at 26 months are only found between 5 degrees on each side of the equator, between 45 deg N and 55 deg N and at 45 deg S. At latitudes were the QBO in stratospheric temperature diminishes so does the QBO in total ozone (i.e. close to 35 deg N and 15 deg S). Over subtropical latitudes there is a tendency towards a more biennial oscillation in total ozone (not correlated with the equatorial QBO in stratospheric temperatures) and at 65 deg N and 65 deg S total ozone oscillates at periods greater than the equatorial QBO.  相似文献   

18.
This study presents the continuation of our previous analysis of variations of atmospheric and space weather parameters above Iberian Peninsula along two years near the 24th solar cycle maximum. In the previous paper (Morozova et al., 2017) we mainly discussed the first mode of principal component analysis of tropospheric and lower stratospheric temperature and pressure fields, which was shown to be correlated with lower stratospheric ozone and anti-correlated with cosmic ray flux. Now we extend the investigation to the second mode, which suggests a coupling between the stratosphere and the ionosphere.This second mode, located in the low and middle stratosphere (and explaining ~7% of temperature and ~3% of geopotential height variations), showed to be statistically significantly correlated with variations of the middle stratosphere ozone content and anti-correlated with variations of ionospheric total electron content. Similar co-variability of these stratospheric and ionospheric parameters was also obtained with the wavelet cross-coherence analysis.To investigate the role of atmospheric circulation dynamics and the causal nature of the found correlations, we applied the convergent cross mapping (CCM) analysis to our series. Strong evidence for the stratosphere-ionosphere coupling were obtained for the winter 2012–2013 that is characterized by the easterly QBO phase (quasi-biennial oscillations of the direction of the stratospheric zonal winds) and a strong SSW (sudden stratospheric warming event). Further analysis (for the three-year time interval 2012–2015) hint that SSWs events play main role in emphasizing the stratosphere-ionosphere coupling.  相似文献   

19.
The International Ozone Rocket Sonde Intercomparison (IORI) conducted at Wallops Island during October 1979 provided a unique opportunity to observe ozone variations in great detail from several observing systems. The measurement period lasted 15 days during which time ozone observations were taken by ground-based, balloon, rocket, and satellite instruments. These data provided a unique opportunity for diagnosing regional stratospheric variability over a 2 week period. Examination of NMC analyses indicated that during this period the stratospheric polar vortex moved southeastward bringing air from high latitudes to Wallops Island above 10 mb. A concurrent change was observed in the upper stratosphere ozone fields observed by Nimbus-7 SBUV and in the ozone vertical distribution measured by the rocket soundings. In this study the satellite and rocket measurements are compared. The agreement is good, certainly within the errors of the measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号