首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Periodic and aperiodic ozone variations in the middle and upper stratosphere
Authors:J London
Institution:Department of Astro-Geophysics, University of Colorado, Boulder, Colorado, USA
Abstract:Umkehr, ozonesonde and satellite observations were used to determine the height/latitude distribution of the amplitude and phase of the periodic components of the variation of the ozone mixing ratio in the middle and upper stratosphere. The amplitude of the first (annual) harmonic is small in the subtropics and increases to a maximum at polar latitudes. It also increases with height in the mid and upper stratosphere to an apparent maximum just below the stratopause. The second (semi-annual) harmonic has an amplitude that is largest in tropical regions and in subpolar regions at a level of about 40 km. There seems to be very little ozone variation above 30 km with dominant periods close to the quasi-biennial period of total ozone observed in the tropics. The percent of the total variance of the ozone mixing ratio accounted for by the first harmonic is larger than 60 percent at all heights from 20° – 60° latitude in both hemispheres (except near 40 km in the Northern Hemisphere). The percent of the total variance accounted for by the second harmonic is maximum at a height of about 40 km in the tropics and at subpolar latitudes where, as mentioned, its amplitude is also largest.The phase of the first harmonic shows a marked transition from a winter/spring maximum below 30 km to a summer maximum at 30 km, changing rapidly to a maximum in winter in both hemispheres. The regions of minimum amplitude of the annual variation and the marked phase shifts with height both indicate the separation by levels of the dominant physical control mechanisms on the periodic changes of the ozone mixing ratio in the middle and upper stratosphere. Changes below 30 km respond primarily to dynamic influences in the lower stratosphere while above 30 km the periodic variations result mainly from photochemical processes. Above 40 km these variations are strongly temperature dependent.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号