首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Fast Auroral SnapshoT (FAST) satellite was launched by a Pegasus XL on August 21, 1996. This was the second launch in the NASA SMall EXplorer (SMEX) program. Early in the mission planning the decision was made to have the University of California at Berkeley Space Sciences Laboratory (UCB-SSL) mechanical engineering staff provide all of the spacecraft appendages, in order to meet the short development schedule, and to insure compatibility. This paper describes the design development, testing and on-orbit deployment of these boom systems: the 2 m carbon fiber magnetometer booms, the 58 m tip to tip spin-plane wire booms, and the 7 m dipole axial stiff booms.  相似文献   

2.
The magnetometer on the STEREO mission is one of the sensors in the IMPACT instrument suite. A single, triaxial, wide-range, low-power and noise fluxgate magnetometer of traditional design—and reduced volume configuration—has been implemented in each spacecraft. The sensors are mounted on the IMPACT telescoping booms at a distance of ~3 m from the spacecraft body to reduce magnetic contamination. The electronics have been designed as an integral part of the IMPACT Data Processing Unit, sharing a common power converter and data/command interfaces. The instruments cover the range ±65,536 nT in two intervals controlled by the IDPU (±512 nT; ±65,536 nT). This very wide range allows operation of the instruments during all phases of the mission, including Earth flybys as well as during spacecraft test and integration in the geomagnetic field. The primary STEREO/IMPACT science objectives addressed by the magnetometer are the study of the interplanetary magnetic field (IMF), its response to solar activity, and its relationship to solar wind structure. The instruments were powered on and the booms deployed on November 1, 2006, seven days after the spacecraft were launched, and are operating nominally. A magnetic cleanliness program was implemented to minimize variable spacecraft fields and to ensure that the static spacecraft-generated magnetic field does not interfere with the measurements.  相似文献   

3.
曹华姿  郭有光  王立新 《航空学报》2018,39(4):121523-121523
操纵品质是评价和设计硬式空中加油伸缩管的重要指标,但目前尚未有系统性的评价伸缩管操纵品质的方法和结论。为了解决现有投入使用的伸缩管型号较少即用于品质研究的样本不足的问题,在对伸缩管本体特性进行分析之后,引入了可以通过改变参考模型参数而获得不同闭环响应特性的控制系统。结合伸缩管的任务特性,设计了在空中加油模拟器上完成的操纵品质试验,并采用主观以及客观两方面的评定手段对具有不同闭环响应特性的评定样本进行了操纵品质评定,从而建立了基于任务的伸缩管操纵品质评定方法。最后,利用低阶等效拟配方法获得了伸缩管的低阶等效参数,通过对多个样本的低阶等效参数与任务评定结果进行统计分析得到了伸缩管俯仰轴和偏航轴的操纵品质等级边界,从而完成伸缩管操纵品质要求的研究。建立的评定方法和操纵品质要求可以作为指导伸缩管设计与评定的理论依据。  相似文献   

4.
Hinged booms are widely used in astrophysics missions; however, the trajectory and deployment velocity are difficult to control because they are usually driven by springs, which limits their application in narrow spaces. Thus, a novel hinged boom is highly required to achieve motion controllability. Through an equivalent substitution between the cable drive loop and the binary link in topology, a type synthesis method for the cable-driven single-degree-of-freedom chain is proposed based on the s...  相似文献   

5.
The Juno Mission   总被引:1,自引:0,他引:1  
The selection of the Discovery Program InSight landing site took over four years from initial identification of possible areas that met engineering constraints, to downselection via targeted data from orbiters (especially Mars Reconnaissance Orbiter (MRO) Context Camera (CTX) and High-Resolution Imaging Science Experiment (HiRISE) images), to selection and certification via sophisticated entry, descent and landing (EDL) simulations. Constraints on elevation (\({\leq}{-}2.5\ \mbox{km}\) for sufficient atmosphere to slow the lander), latitude (initially 15°S–5°N and later 3°N–5°N for solar power and thermal management of the spacecraft), ellipse size (130 km by 27 km from ballistic entry and descent), and a load bearing surface without thick deposits of dust, severely limited acceptable areas to western Elysium Planitia. Within this area, 16 prospective ellipses were identified, which lie ~600 km north of the Mars Science Laboratory (MSL) rover. Mapping of terrains in rapidly acquired CTX images identified especially benign smooth terrain and led to the downselection to four northern ellipses. Acquisition of nearly continuous HiRISE, additional Thermal Emission Imaging System (THEMIS), and High Resolution Stereo Camera (HRSC) images, along with radar data confirmed that ellipse E9 met all landing site constraints: with slopes <15° at 84 m and 2 m length scales for radar tracking and touchdown stability, low rock abundance (<10 %) to avoid impact and spacecraft tip over, instrument deployment constraints, which included identical slope and rock abundance constraints, a radar reflective and load bearing surface, and a fragmented regolith ~5 m thick for full penetration of the heat flow probe. Unlike other Mars landers, science objectives did not directly influence landing site selection.  相似文献   

6.
An attempt has been made to combine data from five instruments on GEOS-1 in order to determine the characteristics of the ambient cold plasma, assess the effects of spacecraft sheaths on the different techniques and establish cross calibration criteria. In addition to measuring plasma density and temperature it is necessary to consider the influence of satellite potential and motion, ionic composition, ion drifts (electric fields), electrons emitted from spacecraft surfaces and any consequent departures from isotropy or Maxwellian distribution.9 October 1977 was selected for the study, the orbit covers a range of L-values between 3.5 and 7.5 giving outbound and inbound plasmapause crossings with plasma densities spanning more than two orders of magnitude. Eclipse data from 7 February 1978 is used to determine the influence of photoelectron emission.Three techniques — active sounding of the plasma frequency resonance (S-301), a mutual impedance measurement (S-304) and DC electric field probe determination of floating potential (S-300) — utilize the long boom sensors in either AC or DC modes. Electrons and ions are measured directly by electrostatic analysers (S-302), mounted on one short radial boom. On the day chosen for study here ions are predominantly protons as determined by the body mounted ion composition experiment (S-303).The techniques using the 20 m long booms agree well in determining density whereas the short boom and body mounted ion detectors are seriously compromised when satellite potential becomes several volts positive. Measurements of satellite potential and plasma temperature agree within 20% among the several instruments making these measurements. Data obtained during the transition from eclipse to sunlight conditions show no discontinuity in the long boom instruments caused by the sudden appearance of photoelectrons.  相似文献   

7.
针对伞降回收双尾撑后推式气动布局的中小型无人机在非正常着陆情况下中翼损伤的问题,分析了中翼损伤的原因及减少其受损的途径,论证了在尾撑上设置易损连接结构的可行性,给出了在尾撑上设置易损连接结构的原理和方法,有效地解决了此问题.  相似文献   

8.
太阳帆航天器动力学建模与求解   总被引:4,自引:2,他引:2  
崔乃刚  刘家夫  荣思远 《航空学报》2010,31(8):1565-1571
 太阳帆航天器动力学建模与求解是姿态控制与结构振动抑制的基础,具有重要的理论与工程意义。针对带有控制杆和控制叶片的太阳帆航天器,进行结构的合理简化。应用矢量力学基本原理,推导出考虑弹性振动的太阳帆航天器姿态动力学方程,再对其进行简化,分别得到基于控制叶片和控制杆的两类太阳帆航天器的姿态动力学方程,联立太阳帆支撑杆振动方程,结合非约束模态的定义对运行于超地球同步转移轨道的太阳帆航天器动力学方程进行了求解及分析,结果表明所建立的太阳帆动力学模型可准确地描述柔性太阳帆航天器的动力学特性。  相似文献   

9.
The Polar satellite carries a system of four wire booms in the spacecraft spin plane and two rigid booms along the spin axis. Each of the booms has a spherical sensor at its tip along with nearby guard and stub surfaces whose potentials relative to that of their sphere are controlled by associated electronics. The potential differences between opposite sphere pairs are measured to yield the three components of the DC to >1 MHz electric field. Spheres can also be operated in a mode in which their collected current is measured to give information on the plasma density and its fluctuations. The scientific studies to be performed by this experiment as well as the mechanical and electrical properties of the detector system are described.  相似文献   

10.
The Juno Magnetic Field Investigation   总被引:2,自引:0,他引:2  
The Juno Magnetic Field investigation (MAG) characterizes Jupiter’s planetary magnetic field and magnetosphere, providing the first globally distributed and proximate measurements of the magnetic field of Jupiter. The magnetic field instrumentation consists of two independent magnetometer sensor suites, each consisting of a tri-axial Fluxgate Magnetometer (FGM) sensor and a pair of co-located imaging sensors mounted on an ultra-stable optical bench. The imaging system sensors are part of a subsystem that provides accurate attitude information (to ~20 arcsec on a spinning spacecraft) near the point of measurement of the magnetic field. The two sensor suites are accommodated at 10 and 12 m from the body of the spacecraft on a 4 m long magnetometer boom affixed to the outer end of one of ’s three solar array assemblies. The magnetometer sensors are controlled by independent and functionally identical electronics boards within the magnetometer electronics package mounted inside Juno’s massive radiation shielded vault. The imaging sensors are controlled by a fully hardware redundant electronics package also mounted within the radiation vault. Each magnetometer sensor measures the vector magnetic field with 100 ppm absolute vector accuracy over a wide dynamic range (to 16 Gauss = \(1.6 \times 10^{6}\mbox{ nT}\) per axis) with a resolution of ~0.05 nT in the most sensitive dynamic range (±1600 nT per axis). Both magnetometers sample the magnetic field simultaneously at an intrinsic sample rate of 64 vector samples per second. The magnetic field instrumentation may be reconfigured in flight to meet unanticipated needs and is fully hardware redundant. The attitude determination system compares images with an on-board star catalog to provide attitude solutions (quaternions) at a rate of up to 4 solutions per second, and may be configured to acquire images of selected targets for science and engineering analysis. The system tracks and catalogs objects that pass through the imager field of view and also provides a continuous record of radiation exposure. A spacecraft magnetic control program was implemented to provide a magnetically clean environment for the magnetic sensors, and residual spacecraft fields and/or sensor offsets are monitored in flight taking advantage of Juno’s spin (nominally 2 rpm) to separate environmental fields from those that rotate with the spacecraft.  相似文献   

11.
The Electric Field Instrument (EFI) for THEMIS   总被引:2,自引:0,他引:2  
The design, performance, and on-orbit operation of the three-axis electric field instrument (EFI) for the NASA THEMIS mission is described. The 20 radial wire boom and 10 axial stacer boom antenna systems making up the EFI sensors on the five THEMIS spacecraft, along with their supporting electronics have been deployed and are operating successfully on-orbit without any mechanical or electrical failures since early 2007. The EFI provides for waveform and spectral three-axis measurements of the ambient electric field from DC up to 8 kHz, with a single, integral broadband channel extending up to 400 kHz. Individual sensor potentials are also measured, providing for on-board and ground-based estimation of spacecraft floating potential and high-resolution plasma density measurements. Individual antenna baselines are 50- and 40-m in the spin plane, and 6.9-m along the spin axis. The EFI has provided for critical observations supporting a clear and definitive understanding of the electrodynamics of both the boundaries of the terrestrial magnetosphere, as well as internal processes, such as relativistic particle acceleration and substorm dynamics. Such multi-point electric field observations are key for pushing forward the understanding of electrodynamics in space, in that without high-quality estimates of the electric field, the underlying electromagnetic processes involved in current sheets, reconnection, and wave-particle interactions may only be inferred, rather than measured, quantified, and used to discriminate between competing hypotheses regarding those processes.  相似文献   

12.
An essential component of the STEREO IMPACT investigation is its nearly 6 m long boom that provides several of the instruments with a sufficiently clean magnetic environment and minimally restricted fields of view, while having the required rigidity to ensure the spacecraft pointing accuracy for the STEREO imaging investigations. Details of the customized telescoping IMPACT Boom design, construction and testing are described in this review. The successful completion and verification of the IMPACT Booms represents a demonstration of the use of Stacers as motive forces for rigid boom deployment.  相似文献   

13.
《中国航空学报》2020,33(8):2204-2211
The stripped solar sail whose membrane is divided into separate narrow membrane strips is believed to have the best structural efficiency. In this paper, the stripped solar sail structure is regarded as an assembly made by connecting a number of boom-strip components in sequence. Considering the coupling effects between booms and membrane strips, an exact and semi-analytical method to calculate structural dynamic responses of the stripped solar sail subjected to solar radiation pressure is established. The case study of a 100 m stripped solar sail shows that the stripped architecture helps to reduce the static deflections and amplitudes of the steady-state dynamic response. Larger prestress of the membrane strips will decrease stiffness of the sail and increase amplitudes of the steady-state dynamic response. Increasing thickness of the boom will benefit to stability of the sail and reduce the resonant amplitudes. This proposed semi-analytical method provides an efficient analysis tool for structure design and attitude control of the stripped solar sail.  相似文献   

14.
The Thermal Emission Imaging System (THEMIS) on 2001 Mars Odyssey will investigate the surface mineralogy and physical properties of Mars using multi-spectral thermal-infrared images in nine wavelengths centered from 6.8 to 14.9 μm, and visible/near-infrared images in five bands centered from 0.42 to 0.86 μm. THEMIS will map the entire planet in both day and night multi-spectral infrared images at 100-m per pixel resolution, 60% of the planet in one-band visible images at 18-m per pixel, and several percent of the planet in 5-band visible color. Most geologic materials, including carbonates, silicates, sulfates, phosphates, and hydroxides have strong fundamental vibrational absorption bands in the thermal-infrared spectral region that provide diagnostic information on mineral composition. The ability to identify a wide range of minerals allows key aqueous minerals, such as carbonates and hydrothermal silica, to be placed into their proper geologic context. The specific objectives of this investigation are to: (1) determine the mineralogy and petrology of localized deposits associated with hydrothermal or sub-aqueous environments, and to identify future landing sites likely to represent these environments; (2) search for thermal anomalies associated with active sub-surface hydrothermal systems; (3) study small-scale geologic processes and landing site characteristics using morphologic and thermophysical properties; and (4) investigate polar cap processes at all seasons. THEMIS follows the Mars Global Surveyor Thermal Emission Spectrometer (TES) and Mars Orbiter Camera (MOC) experiments, providing substantially higher spatial resolution IR multi-spectral images to complement TES hyperspectral (143-band) global mapping, and regional visible imaging at scales intermediate between the Viking and MOC cameras. The THEMIS uses an uncooled microbolometer detector array for the IR focal plane. The optics consists of all-reflective, three-mirror anastigmat telescope with a 12-cm effective aperture and a speed of f/1.6. The IR and visible cameras share the optics and housing, but have independent power and data interfaces to the spacecraft. The IR focal plane has 320 cross-track pixels and 240 down-track pixels covered by 10 ~1-μm-bandwidth strip filters in nine different wavelengths. The visible camera has a 1024×1024 pixel array with 5 filters. The instrument weighs 11.2 kg, is 29 cm by 37 cm by 55 cm in size, and consumes an orbital average power of 14 W.  相似文献   

15.
黑文静  安刚  林皓  高飞 《航空学报》2008,29(3):651-656
 通过对硬式空中加油技术的研究,建立了硬式加油伸缩杆数学模型,结果表明该伸缩杆系统为一个多输入-多输出(MIMO)、耦合、非线性系统。这样解耦控制就成为系统设计的关键。当系统满足可解耦条件时,采用一种基于输入-输出(I/O)非线性反馈线性化的微分几何方法,输出与等效新输入之间呈现线性微分方程关系,选择合适的反馈形式可使伸缩杆的姿态控制解耦。解耦后,伸缩杆就可分解为俯仰和滚转方向两个相互独立的单输入-单输出(SISO)线性子系统。在MATLAB中建立了伸缩杆及其解耦模型,并进行了仿真研究。结果表明该解耦方法很好地消除了系统间的耦合作用,能够满足工程设计的需要。  相似文献   

16.
The presence of rocks in the ejecta of craters at the InSight landing site in southwestern Elysium Planitia indicates a strong, rock-producing unit at depth. A finer regolith above is inferred by the lack of rocks in the ejecta of 10-m-scale craters. This regolith should be penetrable by the mole of the Heat Flow and Physical Properties Package (HP3). An analysis of the size-frequency distribution (SFD) of 7988 rocky ejecta craters (RECs) across four candidate landing ellipses reveals that all craters >200 m in diameter and \({<}750 \pm 30\ \mbox{Ma}\) in age have boulder-sized rocks in their ejecta. The frequency of RECs however decreases significantly below this diameter (\(D\)), represented by a roll-off in the SFD slope. At \(30\ \text{m} < D < 200\ \text{m}\), the slope of the cumulative SFD declines to near zero at \(D < 30\ \text{m}\). Surface modification, resolution limits, or human counting error cannot account for the magnitude of this roll-off. Rather, a significant population of <200 m diameter fresh non-rocky ejecta craters (NRECs) here indicates the presence of a relatively fine-grained regolith that prevents smaller craters from excavating the strong rock-producing unit. Depth to excavation relationships and the REC size thresholds indicate the region is capped by a regolith that is almost everywhere 3 m thick but may be as thick as 12 to 18 m. The lower bound of the thickness range is independently confirmed by the depth to the inner crater in concentric or nested craters. The data indicate that 85% of the InSight landing region is covered by a regolith that is at least 3 m thick. The probability of encountering rockier material at depths >3 m by the HP3 however increases significantly due to the increase in boulder-size rocks in the lower regolith column, near the interface of the bedrock.  相似文献   

17.
The radio-metric tracking data received from the Pioneer 10 and 11 spacecraft from the distances between 20–70 astronomical units from the Sun has consistently indicated the presence of a small, anomalous, blue-shifted Doppler frequency drift that limited the accuracy of the orbit reconstruction for these vehicles. This drift was interpreted as a sunward acceleration of a P =(8.74±1.33)×10?10 m/s2 for each particular spacecraft. This signal has become known as the Pioneer anomaly; the nature of this anomaly is still being investigated. Recently new Pioneer 10 and 11 radio-metric Doppler and flight telemetry data became available. The newly available Doppler data set is much larger when compared to the data used in previous investigations and is the primary source for new investigation of the anomaly. In addition, the flight telemetry files, original project documentation, and newly developed software tools are now used to reconstruct the engineering history of spacecraft. With the help of this information, a thermal model of the Pioneers was developed to study possible contribution of thermal recoil force acting on the spacecraft. The goal of the ongoing efforts is to evaluate the effect of on-board systems on the spacecrafts’ trajectories and possibly identify the nature of this anomaly. Techniques developed for the investigation of the Pioneer anomaly are applicable to the New Horizons mission. Analysis shows that anisotropic thermal radiation from on-board sources will accelerate this spacecraft by ~41×10?10 m/s2. We discuss the lessons learned from the study of the Pioneer anomaly for the New Horizons spacecraft.  相似文献   

18.
2001 Mars Odyssey Mission Summary   总被引:1,自引:0,他引:1  
Saunders  R.S.  Arvidson  R.E.  Badhwar  G.D.  Boynton  W.V.  Christensen  P.R.  Cucinotta  F.A.  Feldman  W.C.  Gibbs  R.G.  Kloss  C.  Landano  M.R.  Mase  R.A.  McSmith  G.W.  Meyer  M.A.  Mitrofanov  I.G.  Pace  G.D.  Plaut  J.J.  Sidney  W.P.  Spencer  D.A.  Thompson  T.W.  Zeitlin  C.J. 《Space Science Reviews》2004,110(1-2):1-36
The 2001 Mars Odyssey spacecraft, now in orbit at Mars, will observe the Martian surface at infrared and visible wavelengths to determine surface mineralogy and morphology, acquire global gamma ray and neutron observations for a full Martian year, and study the Mars radiation environment from orbit. The science objectives of this mission are to: (1) globally map the elemental composition of the surface, (2) determine the abundance of hydrogen in the shallow subsurface, (3) acquire high spatial and spectral resolution images of the surface mineralogy, (4) provide information on the morphology of the surface, and (5) characterize the Martian near-space radiation environment as related to radiation-induced risk to human explorers. To accomplish these objectives, the 2001 Mars Odyssey science payload includes a Gamma Ray Spectrometer (GRS), a multi-spectral Thermal Emission Imaging System (THEMIS), and a radiation detector, the Martian Radiation Environment Experiment (MARIE). THEMIS and MARIE are mounted on the spacecraft with THEMIS pointed at nadir. GRS is a suite of three instruments: a Gamma Subsystem (GSS), a Neutron Spectrometer (NS) and a High-Energy Neutron Detector (HEND). The HEND and NS instruments are mounted on the spacecraft body while the GSS is on a 6-m boom. Some science data were collected during the cruise and aerobraking phases of the mission before the prime mission started. THEMIS acquired infrared and visible images of the Earth-Moon system and of the southern hemisphere of Mars. MARIE monitored the radiation environment during cruise. The GRS collected calibration data during cruise and aerobraking. Early GRS observations in Mars orbit indicated a hydrogen-rich layer in the upper meter of the subsurface in the Southern Hemisphere. Also, atmospheric densities, scale heights, temperatures, and pressures were observed by spacecraft accelerometers during aerobraking as the spacecraft skimmed the upper portions of the Martian atmosphere. This provided the first in-situ evidence of winter polar warming in the Mars upper atmosphere. The prime mission for 2001 Mars Odyssey began in February 2002 and will continue until August 2004. During this prime mission, the 2001 Mars Odyssey spacecraft will also provide radio relays for the National Aeronautics and Space Administration (NASA) and European landers in early 2004. Science data from 2001 Mars Odyssey instruments will be provided to the science community via NASA’s Planetary Data System (PDS). The first PDS release of Odyssey data was in October 2002; subsequent releases occur every 3 months.  相似文献   

19.
This paper describes the Magnetic Electron Ion Spectrometer (MagEIS) instruments aboard the RBSP spacecraft from an instrumentation and engineering point of view. There are four magnetic spectrometers aboard each of the two spacecraft, one low-energy unit (20–240 keV), two medium-energy units (80–1200 keV), and a high-energy unit (800–4800 keV). The high unit also contains a proton telescope (55 keV–20 MeV). The magnetic spectrometers focus electrons within a selected energy pass band upon a focal plane of several silicon detectors where pulse-height analysis is used to determine if the energy of the incident electron is appropriate for the electron momentum selected by the magnet. Thus each event is a two-parameter analysis, an approach leading to a greatly reduced background. The physics of these instruments are described in detail followed by the engineering implementation. The data outputs are described, and examples of the calibration results and early flight data presented.  相似文献   

20.
This paper discusses the necessity, feasibility, and technology of FOPEN GMTI. It argues that this functionality may be one mode in a multi-function UWB UHF system, which jointly possesses the capabilities for air target MTI and high resolution FOPEN SAR. The radar platform may be a UAV or an aircraft, whereas, we propose to use the push boom type of antenna mounting previously adopted with the advantage for the CARABAS II UWB VHF SAR. Presently, the push booms will hold a set of UWB UHF antenna elements. This paper relates GMTI to SAR, extended from imaging stationary ground to the 4-parameter set of targets in linear and uniform motion relative to ground. It is recognised that this extended imaging problem depends on one new parameter, i.e., the SAR focusing velocity. The required signal processing may be tackled in an efficient manner by a hierarchical scheme based on iteratively merging subapertures and increasing the resolution. Rejection of stationary clutter and detection occurs on all levels of increasing resolution. This paper also provides a brief presentation of the Swedish FOA efforts to produce an experimental demonstrator of this multi-function radar system  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号