首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 827 毫秒
1.
Measurements of radiation levels at Mars including the contributions of protons, neutrons, and heavy ions, are pre-requisites for human exploration. The MARIE experiment on the Mars-01 Odyssey spacecraft consists of a spectrometer to make such measurements in Mars orbit. MARIE is measuring the galactic cosmic ray energy spectra during the maximum of the 24th solar cycle, and studying the dynamics of solar particle events and their radial dependence in orbit of Mars. The MARIE spectrometer is designed to measure the energy spectrum from 15 to 500 MeV/n, and when combined other space based instruments, such as the Advanced Composition Explorer (ACE), would provide accurate GCR spectra. Similarly, observations of solar energetic particles can be combined with observations at different points in the inner heliosphere from, for example, the Solar Heliospheric Observatory (SOHO), to gain information on the propagation and radial dependence in the Earth-Mars space. Measurements can be compared with the best available radiation environment and transport models in order to improve these models for subsequent use, and to provide key inputs for the engineering of spacecraft to better protect the human crews exploring Mars.  相似文献   

2.
ExoMars is a two-launch mission undertaken by Roscosmos and European Space Agency. Trace Gas Orbiter, a satellite part of the 2016 launch carries the Fine Resolution Neutron Detector instrument as part of its payload. The instrument aims at mapping hydrogen content in the upper meter of Martian soil with spatial resolution between 60 and 200 km diameter spot. This resolution is achieved by a collimation module that limits the field of view of the instruments detectors. A dosimetry module that surveys the radiation environment in cruise to Mars and on orbit around it is another part of the instrument.This paper describes the mission and the instrument, its measurement principles and technical characteristics. We perform an initial assessment of our sensitivity and time required to achieve the mission goal. The Martian atmosphere is a parameter that needs to be considered in data analysis of a collimated neutron instrument. This factor is described in a section of this paper. Finally, the first data accumulated during cruise to Mars is presented.  相似文献   

3.
Life sciences     
Space life sciences research activities are reviewed for 2003. Many life sciences experiments were lost with the tragic loss of STS-107. Life sciences experiments continue to fly as small payloads to the International Space Station (ISS) via the Russian Progress vehicle. Health-related studies continue with the Martian Radiation Environment Experiment (MARIE) aboard the Odyssey spacecraft, collecting data on the radiation environment in Mars orbit. NASA Ames increased nanotechnology research in all areas, including fundamental biology, bioastronautics, life support systems, and homeland security. Plant research efforts continued at NASA Kennedy, testing candidate crops for ISS. Research included plant growth studies at different light intensities, varying carbon dioxide concentrations, and different growth media. Education and outreach efforts included development of a NASA/USDA program called Space Agriculture in the Classroom. Canada sponsored a project called Tomatosphere, with classrooms across North America exposing seeds to simulated Mars environment for growth studies. NASA's Office of Biological and Physical Research released an updated strategic research plan.  相似文献   

4.
The distant shores of Mars were reached by numerous U.S. and Russian spacecraft throughout the 1960s to mid 1970s. Nearly 20 years have passed since those successful missions which orbited and landed on the Martian surface. Two Soviet probes headed for the planet in July, 1988, but later failed. In August 1993, the U.S. Mars Observer suddenly went silent just three days before it was to enter orbit around the planet and was never heard from again. In late 1996, there will be renewed activity on the launch pads with three probes departing for the red planet: 1) The U.S. Mars Global Surveyor will be launched in November on a Delta II rocket and will orbit the planet for global mapping purposes; 2) Russia's Mars '96 mission, scheduled to fly in November on a Proton launcher, consists of an orbiter, two small stations which will land on the Martian surface, and two penetrators that will plow into the terrain; and finally, 3) a U.S. Discovery-class spacecraft, the Mars Pathfinder, has a December launch date atop a Delta II booster. The mission features a lander and a microrover that will travel short distances over Martian territory. These missions usher in a new phase of Mars exploration, setting the stage for an unprecedented volley of spacecraft that will orbit around, land on, drive across, and perhaps fly at low altitudes over the planet.  相似文献   

5.
The Thermal Emission Imaging System (THEMIS) on 2001 Mars Odyssey will investigate the surface mineralogy and physical properties of Mars using multi-spectral thermal-infrared images in nine wavelengths centered from 6.8 to 14.9 μm, and visible/near-infrared images in five bands centered from 0.42 to 0.86 μm. THEMIS will map the entire planet in both day and night multi-spectral infrared images at 100-m per pixel resolution, 60% of the planet in one-band visible images at 18-m per pixel, and several percent of the planet in 5-band visible color. Most geologic materials, including carbonates, silicates, sulfates, phosphates, and hydroxides have strong fundamental vibrational absorption bands in the thermal-infrared spectral region that provide diagnostic information on mineral composition. The ability to identify a wide range of minerals allows key aqueous minerals, such as carbonates and hydrothermal silica, to be placed into their proper geologic context. The specific objectives of this investigation are to: (1) determine the mineralogy and petrology of localized deposits associated with hydrothermal or sub-aqueous environments, and to identify future landing sites likely to represent these environments; (2) search for thermal anomalies associated with active sub-surface hydrothermal systems; (3) study small-scale geologic processes and landing site characteristics using morphologic and thermophysical properties; and (4) investigate polar cap processes at all seasons. THEMIS follows the Mars Global Surveyor Thermal Emission Spectrometer (TES) and Mars Orbiter Camera (MOC) experiments, providing substantially higher spatial resolution IR multi-spectral images to complement TES hyperspectral (143-band) global mapping, and regional visible imaging at scales intermediate between the Viking and MOC cameras. The THEMIS uses an uncooled microbolometer detector array for the IR focal plane. The optics consists of all-reflective, three-mirror anastigmat telescope with a 12-cm effective aperture and a speed of f/1.6. The IR and visible cameras share the optics and housing, but have independent power and data interfaces to the spacecraft. The IR focal plane has 320 cross-track pixels and 240 down-track pixels covered by 10 ~1-μm-bandwidth strip filters in nine different wavelengths. The visible camera has a 1024×1024 pixel array with 5 filters. The instrument weighs 11.2 kg, is 29 cm by 37 cm by 55 cm in size, and consumes an orbital average power of 14 W.  相似文献   

6.
The potential risks for late effects including cancer, cataracts, and neurological disorders due to exposures to the galactic cosmic rays (GCR) is a large concern for the human exploration of Mars. Physical models are needed to project the radiation exposures to be received by astronauts in transit to Mars and on the Mars surface, including the understanding of the modification of the GCR by the Martian atmosphere and identifying shielding optimization approaches. The Mars Global Surveyor (MGS) mission has been collecting Martian surface topographical data with the Mars Orbiter Laser Altimeter (MOLA). Here we present calculations of radiation climate maps of the surface of Mars using the MOLA data, the radiation transport model HZETRN (high charge and high energy transport), and the quantum multiple scattering fragmentation model, QMSFRG. Organ doses and the average number of particle hits per cell nucleus from GCR components (protons, heavy ions, and neutrons) are evaluated as a function of the altitude on the Martian surface. Approaches to improve the accuracy of the radiation climate map, presented here using data from the 2001 Mars Odyssey mission, are discussed.  相似文献   

7.
The heating of the upper atmospheres and the formation of the ionospheres on Venus and Mars are mainly controlled by the solar X-ray and extreme ultraviolet (EUV) radiation (λ = 0.1–102.7 nm and can be characterized by the 10.7 cm solar radio flux). Previous estimations of the average Martian dayside exospheric temperature inferred from topside plasma scale heights, UV airglow and Lyman-α dayglow observations of up to ∼500 K imply a stronger dependence on solar activity than that found on Venus by the Pioneer Venus Orbiter (PVO) and Magellan spacecraft. However, this dependence appears to be inconsistent with exospheric temperatures (<250 K) inferred from aerobraking maneuvers of recent spacecraft like Mars Pathfinder, Mars Global Surveyor and Mars Odyssey during different solar activity periods and at different orbital locations of the planet. In a similar way, early Lyman-α dayglow and UV airglow observations by Venera 4, Mariner 5 and 10, and Venera 9–12 at Venus also suggested much higher exospheric temperatures of up to 1000 K as compared with the average dayside exospheric temperature of about 270 K inferred from neutral gas mass spectrometry data obtained by PVO. In order to compare Venus and Mars, we estimated the dayside exobase temperature of Venus by using electron density profiles obtained from the PVO radio science experiment during the solar cycle and found the Venusian temperature to vary between 250–300 K, being in reasonable agreement with the exospheric temperatures inferred from Magellan aerobraking data and PVO mass spectrometer measurements. The same method has been applied to Mars by studying the solar cycle variation of the ionospheric peak plasma density observed by Mars Global Surveyor during both solar minimum and maximum conditions, yielding a temperature range between 190–220 K. This result clearly indicates that the average Martian dayside temperature at the exobase does not exceed a value of about 240 K during high solar activity conditions and that the response of the upper atmosphere temperature on Mars to solar activity near the ionization maximum is essentially the same as on Venus. The reason for this discrepancy between exospheric temperature determinations from topside plasma scale heights and electron distributions near the ionospheric maximum seems to lie in the fact that thermal and photochemical equilibrium applies only at altitudes below 170 km, whereas topside scale heights are derived for much higher altitudes where they are modified by transport processes and where local thermodynamic equilibrium (LTE) conditions are violated. Moreover, from simulating the energy density distribution of photochemically produced moderately energetic H, C and O atoms, as well as CO molecules, we argue that exospheric temperatures inferred from Lyman-α dayglow and UV airglow observations result in too high values, because these particles, as well as energetic neutral atoms, transformed from solar wind protons into hydrogen atoms via charge exchange, may contribute to the observed planetary hot neutral gas coronae. Because the low exospheric temperatures inferred from neutral gas mass spectrometer and aerobraking data, as well as from CO+ 2 UV doublet emissions near 180–260 nm obtained from the Mars Express SPICAM UV spectrograph suggest rather low heating efficiencies, some hitherto unidentified additional IR-cooling mechanism in the thermospheres of both Venus and Mars is likely to exist. An erratum to this article can be found at  相似文献   

8.
Life sciences     
Space life sciences research activities are reviewed for the year. Highlights of animal studies were the first long-term flight of an animal enclosure module and an avian development facility on STS-108. Plant research efforts focused on a biomass production system for eventual use on the International Space Station (ISS), the PESTO experiment on ISS, and screening of several salad crop varieties for potential use in space. Health-related studies included the Martian Radiation Environment Experiment (MARIE) on the Mars Odyssey mission, presentation of results from NASA's Biomolecular Physics and Chemistry Program, and research related to human liver cell function in space through an agreement with StelSys. In industry and academia, a memorandum of understanding was signed between NASA and the biotechnology industry to enhance communication between NASA and the industry, expand commercial biotechnology space research and development, and expand formal and informal education of industry and the public regarding biotechnology and space research. NASA selected Purdue University to lead an NSCORT for advanced life support research to develop technologies to enable long-duration planetary mission and sustain human space colonies.  相似文献   

9.
The five THEMIS spacecraft and a dedicated ground-based observatory array will pinpoint when and where substorms occur, thereby providing the observations needed to identify the processes that cause substorms to suddenly release solar wind energy stored within the Earth’s magnetotail. The primary science which drove the mission design enables unprecedented observations relevant to magnetospheric research areas ranging from the foreshock to the Earth’s radiation belts. This paper describes how THEMIS will reach closure on its baseline scientific objectives as a function of mission phase.  相似文献   

10.
THEMIS was launched on February 17, 2007 to determine the trigger and large-scale evolution of substorms. During the first seven months of the mission the five satellites coasted near their injection orbit to avoid differential precession in anticipation of orbit placement, which started in September 2007 and led to a commencement of the baseline mission in December 2007. During the coast phase the probes were put into a string-of-pearls configuration at 100 s of km to 2 RE along-track separations, which provided a unique view of the magnetosphere and enabled an unprecedented dataset in anticipation of the first tail season. In this paper we describe the first THEMIS substorm observations, captured during instrument commissioning on March 23, 2007. THEMIS measured the rapid expansion of the plasma sheet at a speed that is commensurate with the simultaneous expansion of the auroras on the ground. These are the first unequivocal observations of the rapid westward expansion process in space and on the ground. Aided by the remote sensing technique at energetic particle boundaries and combined with ancillary measurements and MHD simulations, they allow determination and mapping of space currents. These measurements show the power of the THEMIS instrumentation in the tail and the radiation belts. We also present THEMIS Flux Transfer Events (FTE) observations at the magnetopause, which demonstrate the importance of multi-point observations there and the quality of the THEMIS instrumentation in that region of space.  相似文献   

11.
12.
The Time History of Events and Macroscale Interactions during Substorms (THEMIS) mission is a NASA Medium-class Explorer (MIDEX) mission, launched on February 17, 2007. The mission employs five identical micro-satellites, or “probes,” which line-up along the Earth’s magnetotail every four days in conjunctions to determine the trigger and large-scale evolution of magnetic substorms. The probes are equipped with a comprehensive suite of instruments that measure and track the motion of thermal and super-thermal ions and electrons, and electric and magnetic fields, at key regions in the magnetosphere. Primary science objectives require high data rates at periods of scientific interest, large data volumes, and control of science data collection on suborbital time scales. A central Instrument Data Processing Unit (IDPU) is necessary to organize and prioritize the data from the large number of instruments into a 200 MB solid state memory. The large data volume produced by the instruments requires a flexible memory capable of both high resolution snapshots during conjunctions and coarser survey data collection throughout the orbit. Onboard triggering algorithms select and prioritize the snapshots based on data quality to optimize the science data that is returned to the ground. This paper presents a detailed discussion of the hardware and software design of the THEMIS IDPU, describing the heritage design that has been fundamental to the THEMIS mission success so far.  相似文献   

13.
The Juno Mission   总被引:1,自引:0,他引:1  
The selection of the Discovery Program InSight landing site took over four years from initial identification of possible areas that met engineering constraints, to downselection via targeted data from orbiters (especially Mars Reconnaissance Orbiter (MRO) Context Camera (CTX) and High-Resolution Imaging Science Experiment (HiRISE) images), to selection and certification via sophisticated entry, descent and landing (EDL) simulations. Constraints on elevation (\({\leq}{-}2.5\ \mbox{km}\) for sufficient atmosphere to slow the lander), latitude (initially 15°S–5°N and later 3°N–5°N for solar power and thermal management of the spacecraft), ellipse size (130 km by 27 km from ballistic entry and descent), and a load bearing surface without thick deposits of dust, severely limited acceptable areas to western Elysium Planitia. Within this area, 16 prospective ellipses were identified, which lie ~600 km north of the Mars Science Laboratory (MSL) rover. Mapping of terrains in rapidly acquired CTX images identified especially benign smooth terrain and led to the downselection to four northern ellipses. Acquisition of nearly continuous HiRISE, additional Thermal Emission Imaging System (THEMIS), and High Resolution Stereo Camera (HRSC) images, along with radar data confirmed that ellipse E9 met all landing site constraints: with slopes <15° at 84 m and 2 m length scales for radar tracking and touchdown stability, low rock abundance (<10 %) to avoid impact and spacecraft tip over, instrument deployment constraints, which included identical slope and rock abundance constraints, a radar reflective and load bearing surface, and a fragmented regolith ~5 m thick for full penetration of the heat flow probe. Unlike other Mars landers, science objectives did not directly influence landing site selection.  相似文献   

14.
In July 2016, NASA’s Juno mission becomes the first spacecraft to enter polar orbit of Jupiter and venture deep into unexplored polar territories of the magnetosphere. Focusing on these polar regions, we review current understanding of the structure and dynamics of the magnetosphere and summarize the outstanding issues. The Juno mission profile involves (a) a several-week approach from the dawn side of Jupiter’s magnetosphere, with an orbit-insertion maneuver on July 6, 2016; (b) a 107-day capture orbit, also on the dawn flank; and (c) a series of thirty 11-day science orbits with the spacecraft flying over Jupiter’s poles and ducking under the radiation belts. We show how Juno’s view of the magnetosphere evolves over the year of science orbits. The Juno spacecraft carries a range of instruments that take particles and fields measurements, remote sensing observations of auroral emissions at UV, visible, IR and radio wavelengths, and detect microwave emission from Jupiter’s radiation belts. We summarize how these Juno measurements address issues of auroral processes, microphysical plasma physics, ionosphere-magnetosphere and satellite-magnetosphere coupling, sources and sinks of plasma, the radiation belts, and the dynamics of the outer magnetosphere. To reach Jupiter, the Juno spacecraft passed close to the Earth on October 9, 2013, gaining the necessary energy to get to Jupiter. The Earth flyby provided an opportunity to test Juno’s instrumentation as well as take scientific data in the terrestrial magnetosphere, in conjunction with ground-based and Earth-orbiting assets.  相似文献   

15.
Dawn??s ion propulsion system (IPS) is the most advanced propulsion system ever built for a deep-space mission. Aside from the Mars gravity assist it provides all of the post-launch ??V required for the mission including the heliocentric transfer to Vesta, orbit capture at Vesta, transfer to various Vesta science orbits, escape from Vesta, the heliocentric transfer to Ceres, orbit capture at Ceres, and transfer to the different Ceres science orbits. The ion propulsion system provides a total ??V of nearly 11 km/s, comparable to the ??V provided by the 3-stage launch vehicle, and a total impulse of 1.2×107 N?s.  相似文献   

16.
ARTEMIS Mission Design   总被引:2,自引:0,他引:2  
The ARTEMIS mission takes two of the five THEMIS spacecraft beyond their prime mission objectives and reuses them to study the Moon and the lunar space environment. Although the spacecraft and fuel resources were tailored to space observations from Earth orbit, sufficient fuel margins, spacecraft capability, and operational flexibility were present that with a circuitous, ballistic, constrained-thrust trajectory, new scientific information could be gleaned from the instruments near the Moon and in lunar orbit. We discuss the challenges of ARTEMIS trajectory design and describe its current implementation to address both heliophysics and planetary science objectives. In particular, we explain the challenges imposed by the constraints of the orbiting hardware and describe the trajectory solutions found in prolonged ballistic flight paths that include multiple lunar approaches, lunar flybys, low-energy trajectory segments, lunar Lissajous orbits, and low-lunar-periapse orbits. We conclude with a discussion of the risks that we took to enable the development and implementation of ARTEMIS.  相似文献   

17.
The surface of Mars is an environment significantly different from both the surface of the Earth and from orbit. Solar cell performance is the major constraint on the landing site latitude, on science operations, and on how long during each day and during which Mars seasons a spacecraft can operate. This article examines what we know about the environment of Mars and how it affects the selection of solar cells for Mars surface operation  相似文献   

18.
As a part of the global plasma environment study of Mars and its response to the solar wind, we have analyzed a peculiar case of the subsolar energetic neutral atom (ENA) jet observed on June 7, 2004 by the Neutral Particle Detector (NPD) on board the Mars Express satellite. The “subsolar ENA jet” is generated by the interaction between the solar wind and the Martian exosphere, and is one of the most intense sources of ENA flux observed in the vicinity of Mars. On June 7, 2004 (orbit 485 of Mars Express), the NPD observed a very intense subsolar ENA jet, which then abruptly decreased within ∼10 sec followed by quasi-periodic (∼1 min) flux variations. Simultaneously, the plasma sensors detected a solar wind structure, which was most likely an interplanetary shock surface. The abrupt decrease of the ENA flux and the quasi-periodic flux variations can be understood in the framework of the global response of the Martian plasma obstacle to the interplanetary shock. The generation region of the subsolar ENA jet was pushed towards the planet by the interplanetary shock; and therefore, Mars Express went out of the ENA jet region. Associated global vibrations of the Martian plasma obstacle may have been the cause of the quasi-periodic flux variations of the ENA flux at the spacecraft location.  相似文献   

19.
Nearly three decades after the Mariner 10 spacecraft’s third and final targeted Mercury flyby, the 3 August 2004 launch of the MESSENGER (MErcury Surface, Space ENvironment, GEochemistry, and Ranging) spacecraft began a new phase of exploration of the closest planet to our Sun. In order to ensure that the spacecraft had sufficient time for pre-launch testing, the NASA Discovery Program mission to orbit Mercury experienced launch delays that required utilization of the most complex of three possible mission profiles in 2004. During the 7.6-year mission, the spacecraft’s trajectory will include six planetary flybys (including three of Mercury between January 2008 and September 2009), dozens of trajectory-correction maneuvers (TCMs), and a year in orbit around Mercury. Members of the mission design and navigation teams optimize the spacecraft’s trajectory, specify TCM requirements, and predict and reconstruct the spacecraft’s orbit. These primary mission design and navigation responsibilities are closely coordinated with spacecraft design limitations, operational constraints, availability of ground-based tracking stations, and science objectives. A few days after the spacecraft enters Mercury orbit in mid-March 2011, the orbit will have an 80° inclination relative to Mercury’s equator, a 200-km minimum altitude over 60°N latitude, and a 12-hour period. In order to accommodate science goals that require long durations during Mercury orbit without trajectory adjustments, pairs of orbit-correction maneuvers are scheduled every 88 days (once per Mercury year).  相似文献   

20.
The NASA Radiation Belt Storm Probes (RBSP) mission addresses how populations of high energy charged particles are created, vary, and evolve in space environments, and specifically within Earth’s magnetically trapped radiation belts. RBSP, with a nominal launch date of August 2012, comprises two spacecraft making in situ measurements for at least 2 years in nearly the same highly elliptical, low inclination orbits (1.1×5.8 RE, 10°). The orbits are slightly different so that 1 spacecraft laps the other spacecraft about every 2.5 months, allowing separation of spatial from temporal effects over spatial scales ranging from ~0.1 to 5 RE. The uniquely comprehensive suite of instruments, identical on the two spacecraft, measures all of the particle (electrons, ions, ion composition), fields (E and B), and wave distributions (d E and d B) that are needed to resolve the most critical science questions. Here we summarize the high level science objectives for the RBSP mission, provide historical background on studies of Earth and planetary radiation belts, present examples of the most compelling scientific mysteries of the radiation belts, present the mission design of the RBSP mission that targets these mysteries and objectives, present the observation and measurement requirements for the mission, and introduce the instrumentation that will deliver these measurements. This paper references and is followed by a number of companion papers that describe the details of the RBSP mission, spacecraft, and instruments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号