首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Calculations are made to obtain the raw electrical power that can be generated by using an ATS-6 type deployable parabolic dish as a surface for mounting solar cells without seriously interfering with its normal function as an antenna. A minimum of a few hundred watts to a maximum of a few kilowatts are generated during the apparent course of the Sun around the spacecraft. Academically, it seems that deployable solar cell panels along with their booms can be avoided.  相似文献   

2.
The Electric Field Instrument (EFI) for THEMIS   总被引:2,自引:0,他引:2  
The design, performance, and on-orbit operation of the three-axis electric field instrument (EFI) for the NASA THEMIS mission is described. The 20 radial wire boom and 10 axial stacer boom antenna systems making up the EFI sensors on the five THEMIS spacecraft, along with their supporting electronics have been deployed and are operating successfully on-orbit without any mechanical or electrical failures since early 2007. The EFI provides for waveform and spectral three-axis measurements of the ambient electric field from DC up to 8 kHz, with a single, integral broadband channel extending up to 400 kHz. Individual sensor potentials are also measured, providing for on-board and ground-based estimation of spacecraft floating potential and high-resolution plasma density measurements. Individual antenna baselines are 50- and 40-m in the spin plane, and 6.9-m along the spin axis. The EFI has provided for critical observations supporting a clear and definitive understanding of the electrodynamics of both the boundaries of the terrestrial magnetosphere, as well as internal processes, such as relativistic particle acceleration and substorm dynamics. Such multi-point electric field observations are key for pushing forward the understanding of electrodynamics in space, in that without high-quality estimates of the electric field, the underlying electromagnetic processes involved in current sheets, reconnection, and wave-particle interactions may only be inferred, rather than measured, quantified, and used to discriminate between competing hypotheses regarding those processes.  相似文献   

3.
在中国空气动力研究与发展中心超高速所弹道靶上利用电子密度测量系统进行了高超声速钢球模型、铜球模型尾迹电子密度测量。电子密度测量系统由8mm微波干涉仪系统、开式微波谐振腔测量系统和闭式微波谐振腔测量系统组成。钢球模型直径φ10mm,速度分别为5.8、5.5、5.6和5.5km/s,对应的飞行环境压力分别为2.79、5.32、5.85和10.91kPa。铜球模型直径φ10mm,速度分别为5.6、5.6、5.7和5.5km/s,对应的飞行环境压力分别为1.33、4.79、5.89和10.91kPa。结果表明:(1)在压力5.3~11kPa范围内、速度约5.5km/s试验条件下,压力越高,钢球模型的尾迹电子密度相应增大,电子密度的衰减速度较快;(2)在压力1.3~6kPa范围内、速度约5.6km/s试验条件下,压力越高,铜球模型的尾迹电子密度相应增大,电子密度的衰减速度较慢;(3)在压力约10.7kPa、速度5.5km/s试验条件下,铜球模型的尾迹电子密度衰减速度比钢球模型慢得多。  相似文献   

4.
立式风洞是研究飞机尾旋与尾旋改出的特种设施。由于尾旋试验模型的大小受限于风洞的试验段尺寸和流场的边界条件,较难在模型内部安装测量系统,早期均采用外部系统对处于螺旋运动状态的飞机模型姿态进行捕捉、辨识,进而分析飞机的尾旋特性与改出特性。随着材料科学、智能加工技术和信号传输技术的发展进步,测量系统向模块化、微型化和超微型化发展,使得测量机构能够安置于飞机模型的内部,这样不仅可以实时测量数据并记录,不需要到试验后才进行判读和辨识,而且所测量的数据更加完整。  相似文献   

5.
The requirements, design, implementation, and flight performance of an on-board image compression system for the lunar orbiting Radio Astronomy Explorer-2 (RAE-2) spacecraft are described. The image to be compressed is a panoramic camera view of the long radio astronomy antenna booms used for gravity-gradient stabilization of the spacecraft. A compression ratio of 32 to 1 is obtained by a combination of scan line skipping and adaptive run-length coding. The compressed imagery data are convolutionally encoded for error protection. This image compression system occupies about 1000 cm2 and consumes 0.4 W.  相似文献   

6.
The magnetometer on the STEREO mission is one of the sensors in the IMPACT instrument suite. A single, triaxial, wide-range, low-power and noise fluxgate magnetometer of traditional design—and reduced volume configuration—has been implemented in each spacecraft. The sensors are mounted on the IMPACT telescoping booms at a distance of ~3 m from the spacecraft body to reduce magnetic contamination. The electronics have been designed as an integral part of the IMPACT Data Processing Unit, sharing a common power converter and data/command interfaces. The instruments cover the range ±65,536 nT in two intervals controlled by the IDPU (±512 nT; ±65,536 nT). This very wide range allows operation of the instruments during all phases of the mission, including Earth flybys as well as during spacecraft test and integration in the geomagnetic field. The primary STEREO/IMPACT science objectives addressed by the magnetometer are the study of the interplanetary magnetic field (IMF), its response to solar activity, and its relationship to solar wind structure. The instruments were powered on and the booms deployed on November 1, 2006, seven days after the spacecraft were launched, and are operating nominally. A magnetic cleanliness program was implemented to minimize variable spacecraft fields and to ensure that the static spacecraft-generated magnetic field does not interfere with the measurements.  相似文献   

7.
飞机系统集成化程度的提高增加了对航空电子系统设计和分析的难度,同时也对安全性需求等系统特性的验证提出了更高的技术要求。对基于结构化分析和设计语言(AADL)的系统建模和仿真流程及相应的评估分析能力进行了介绍,并在基于AADL的航空电子系统建模框架下,提出基于AADL的航空电子系统仿真评估和验证方法,利用结构化分析和设计语言AADL构建航空电子系统典型子系统的正常模型和错误模型,并以此建立系统的扩展模型。在此基础上,利用形式化方法对系统模型进行描述并转化为Kripke结构。最后对系统模型进行模型仿真和特性验证,验证所构建的系统架构和设计逻辑是否符合系统设计特性需求。  相似文献   

8.
Hinged booms are widely used in astrophysics missions; however, the trajectory and deployment velocity are difficult to control because they are usually driven by springs, which limits their application in narrow spaces. Thus, a novel hinged boom is highly required to achieve motion controllability. Through an equivalent substitution between the cable drive loop and the binary link in topology, a type synthesis method for the cable-driven single-degree-of-freedom chain is proposed based on the s...  相似文献   

9.
This paper considers a novel attitude stabilizing system which acts both as a passive nutation damper and a momentum source for an Earth-orbiting satellite. The system may be designed to use four identical wheels mounted coaxially with and at the ends of the arms of a cruciform structure. The structure may then be spun about the axis perpendicular to the arms to provide angular momentum along the spacecraft spin axis. The wheels experience torques produced by inertial forces. The necessary damping and restoring (spring) torques are provided by means of a torsional arrangement built around the center of each wheel. The performance characteristics of the proposed stabilizing unit are evaluated by considering spacecraft parameters used in one phase of development of the Communications Technology Satellite (CTS). The results obtained for a specific design of the stabilizer indicate that global stability of the desired attitude motion of the spacecraft can be guaranteed with associated damping time constant as low as one second.  相似文献   

10.
This paper describes an aspect system flown on PIONEERS VI and VII2 which incorporates an extremely accurate adaptive digital computer in order to define rigorously equal time intervals which are submultiples of the spacecraft spin period. The several submultiples which compose the complete spin period exhibit equality to within 2.5 parts in 105. This system has potential applications in other experiments involving the study of the angular dependence of cosmic radiation and other physical phenomena being measured by a single directional detector mounted on spin-stabilized spacecraft. Included here are the scientific goals for this experiment, system restraints, and the generalized system operation. Some details on specific logic and hardware implementation for the Pioneer experiments are included along with in-flight performance evaluation of the system aboard PIONEER VI.  相似文献   

11.
In order to implement 3D scanning of those complicated parts such as blades in the aviation field,a non-contact optical measuring system is established in the paper,which integrates a laser displacement sensor,a probe head,the frame of a coordinate measuring machine (CMM),etc.As the output of the laser sensor directly obtained possesses the 1D length of the laser beam,it needs to determine the unit direction vector of the laser beam denoted as (l,m,n) by calibration so as to convert the 1D values into 3D coordinates of target points.Therefore,an extrinsic calibration method based on a standard sphere is proposed to accomplish this task in the paper.During the calibration procedure,the laser sensor moves along with the motion of the CMM and gathers the required data on the spherical surface.Then,both the output of the laser sensor and the grating readings of the CMM are substituted into the constraint equation of the spherical surface,in which an over-determined nonlinear equation group containing unknown parameters is established.For the purpose of solving the equation group,a method based on non-linear least squares optimization is put forward.Finally,the system after calibration is utilized to measure the diameter of a metallic sphere 10 times from different orientations to verify the calibration accuracy.In the experiment,the errors between the measured results and the true values are all smaller than 0.03 mm,which manifests the validity and practicality of the extrinsic calibration method presented in the paper.  相似文献   

12.
This invention relates to an attitude stabilizing system for adrodshaped satellite in which stabilization is achieved by use of a spinning ing energy dissipator. The system can operate by being mounted on the rotor of a dual spin satellite of by being connected to the main body of the satellite through a motor and bearing assembly. In the latter situation, the stabilizer acts both as a nutation damper and a momentum source and thereby eliminates the need for an additional rotor element to provide the spacecraft momentum. The spinning energy dissipator may be designed to use four identical al wheels mounted coaxially with and at the ends of the arms of a cruciform structure. The structure may then be spun about the axis perpendicular to the arms, to provide angular momentum along the spacecraft spin axis. In the event of any spacecraft nutation, n, the wheels experience the torques produced by inertial forces. The necessary damping and restoring (spring) torques are provided by means of a torsional arrangement built around the center of each wheel. In order to provide damping at lower threshold of spacecraft nutations, the dissipator wheels may also include viscous ring dampers mounted on or around each wheel.  相似文献   

13.
It is shown that when the gyro spin vector is in opposition to the spin vector of the vehicle, the output differential equation of the gyro becomes unstable for large vehicle spin values. When the gyro is used with its spin vector along the spin vector of the vehicle, the steady-state response of the gyro is a nonlinear function of the roll rate of the vehicle.  相似文献   

14.
A mathematical formulation of the spacecraft spin axis attitude determination problem in the form of a norm constrained-least-squares minimization problem is provided. The formulation has a mathematically transparent interpretation as a search for the optimal unit vector on the surface of the unit sphere. Two algorithms are developed and compared by simulation. The results show a tradeoff between estimation accuracy and computational requirements. One algorithm is about three times more accurate than the other and is therefore recommended even though it requires about 20% more in computer storage and operations, and about 50% more in central processing unit time  相似文献   

15.
The Fast Auroral SnapshoT (FAST) satellite was launched by a Pegasus XL on August 21, 1996. This was the second launch in the NASA SMall EXplorer (SMEX) program. Early in the mission planning the decision was made to have the University of California at Berkeley Space Sciences Laboratory (UCB-SSL) mechanical engineering staff provide all of the spacecraft appendages, in order to meet the short development schedule, and to insure compatibility. This paper describes the design development, testing and on-orbit deployment of these boom systems: the 2 m carbon fiber magnetometer booms, the 58 m tip to tip spin-plane wire booms, and the 7 m dipole axial stiff booms.  相似文献   

16.
Supersonic biplane—A review   总被引:1,自引:0,他引:1  
One of the fundamental problems preventing commercial transport aircraft from supersonic flight is the generation of strong sonic booms. Sonic booms are the ground-level manifestation of shock waves created by airplanes flying at supersonic speeds. The strength of the shock waves generated by an aircraft flying at supersonic speed is a direct function of both the aircraft’s weight and its occupying volume; it has been very difficult to sufficiently reduce the shock waves generated by the heavier and larger conventional supersonic transport (SST) configuration to meet acceptable at-ground sonic-boom levels. It is our dream to develop a quiet SST aircraft that can carry more than 100 passengers while meeting acceptable at-ground sonic-boom levels. We have started a supersonic-biplane project at Tohoku University since 2004. We meet the challenge of quiet SST flight by extending the classic two-dimensional (2-D) Busemann biplane concept to a 3-D supersonic-biplane wing that effectively reduces the shock waves generated by the aircraft. A lifted airfoil at supersonic speeds, in general, generates shock waves (therefore, wave drag) through two fundamentally different mechanisms. One is due to the airfoil’s lift, and the other is due to its thickness. Multi-airfoil configurations can reduce wave drag by redistributing the system’s total lift among the individual airfoil elements, knowing that wave drag of an airfoil element is proportional to the square of its lift. Likewise, the wave drag due to airfoil thickness can also be nearly eliminated using the Busemann biplane concept, which promotes favorable wave interactions between two neighboring airfoil elements. One of the main objectives of our supersonic-biplane study is, with the help of modern computational fluid dynamics (CFD) tools, to find biplane configurations that simultaneously exhibit both traits. We first re-analyzed using CFD tools, the classic Busemann biplane configurations to understand its basic wave-cancellation concept. We then designed a 2-D supersonic biplane that exhibits both wave-reduction and cancellation effects simultaneously, utilizing an inverse-design method. The designed supersonic biplane not only showed the desired aerodynamic characteristics at its design condition but also outperformed a zero-thickness flat-plate airfoil. (Zero-thickness flat-plate airfoils are known as the most efficient monoplane airfoil at supersonic speeds.) Also discussed in this paper is how to design 2-D biplanes, not only at their design Mach numbers but also at off-design conditions. Supersonic biplanes have unacceptable characteristics at their off-design conditions such as flow choking and its related hysteresis problems. Flow choking causes rapid increase of wave drag and it continues to be kept up to the Mach numbers greater the cruise (design) Mach numbers due to its hysteresis. Some wing devices such as slats and flaps, which could be used at take-off and landing conditions as high-lift devices, were utilized to overcome these off-design problems. Then supersonic-biplane airfoils were extended to 3-D wings. Because that rectangular-shaped 3-D biplane wings showed undesirable aerodynamic characteristics at their wingtips, a tapered-wing planform was chosen for the study. A 3-D biplane wing having a taper ratio and aspect ratio of 0.25 and 5.12, respectively, was designed utilizing the inverse-design method. Aerodynamic characteristics of the designed biplane wing were further improved by using winglets at its wingtips. Flow choking and its hysteresis problems, however, occurred at their off-design conditions. It was shown that these off-design problems could also be resolved by utilizing slats and flaps. Finally, a study on the aerodynamic characteristics of wing-body configurations was conducted using the tapered biplane wing. In this study a body was chosen in order to generate strong shock waves at its nose region. Preliminary parametric studies on the interference effects between the body and the tapered biplane wing were performed by choosing several different wing locations on the body. From this study, it can be concluded that the aerodynamic characteristics of the tapered biplane wing are minimally affected by the disturbances generated from the body, and that the biplane wing shows promise for quiet commercial supersonic transport.  相似文献   

17.
SERF(Spin Exchange Relaxation Free)陀螺仪利用电子自旋在惯性空间的定轴性敏感载体转动信息,具有超高精度、小体积的特点,已成为国内外惯性技术领域的研究热点之一.本文介绍了SERF陀螺仅的基本原理,回顾了SERF陀螺仪的国内外发展历程,指出SERF陀螺仪发展需要解决原子气室抗弛豫、核自旋磁场补偿闭环和高精度的信号检测三个关键技术,并展望了SERF陀螺仪在未来潜在的应用前景.  相似文献   

18.
The spins of ten stellar black holes have been measured using the continuum-fitting method. These black holes are located in two distinct classes of X-ray binary systems, one that is persistently X-ray bright and another that is transient. Both the persistent and transient black holes remain for long periods in a state where their spectra are dominated by a thermal accretion disk component. The spin of a black hole of known mass and distance can be measured by fitting this thermal continuum spectrum to the thin-disk model of Novikov and Thorne; the key fit parameter is the radius of the inner edge of the black hole’s accretion disk. Strong observational and theoretical evidence links the inner-disk radius to the radius of the innermost stable circular orbit, which is trivially related to the dimensionless spin parameter a ? of the black hole (|a ?|<1). The ten spins that have so far been measured by this continuum-fitting method range widely from a ?≈0 to a ?>0.95. The robustness of the method is demonstrated by the dozens or hundreds of independent and consistent measurements of spin that have been obtained for several black holes, and through careful consideration of many sources of systematic error. Among the results discussed is a dichotomy between the transient and persistent black holes; the latter have higher spins and larger masses. Also discussed is recently discovered evidence in the transient sources for a correlation between the power of ballistic jets and black hole spin.  相似文献   

19.
尾旋自动防止系统非线性解耦控制律综合方法   总被引:1,自引:0,他引:1  
李季陆  方振平 《航空学报》1996,17(3):286-291
将非线性解耦控制理论应用于飞机尾旋自动防止系统中,给出一种考虑尾旋动态特性的解耦控制律综合方法。根据某架现代战斗机的数学模型,用这种方法设计了用升降舵、副翼、方向舵对迎角、侧滑角和滚转角速度解耦的尾旋自动防止控制律。相应的闭环系统数字仿真取得了满意的效果  相似文献   

20.
不同直径圆球诱导燃烧的振荡机制与频率特性   总被引:1,自引:1,他引:0       下载免费PDF全文
刘帅  张子健  滕宏辉 《推进技术》2021,42(4):745-754
为了分析不同直径圆球诱导振荡燃烧的规律,并揭示圆球大小在振荡燃烧现象中所发挥的深层次作用,本文采用二维轴对称Euler方程和基元反应模型,对不同直径的圆球在H2/air预混气体中诱导振荡燃烧的现象开展数值模拟研究。研究发现,振荡频率并不是简单地随直径增大而逐渐从高频向低频连续过渡,而是存在两次突变,形成了超高频、高频以及低频三种振荡燃烧模态。在两种模态间过渡时,振荡达到稳定状态前,会存在一段双频耦合的振荡阶段。三种不同振荡燃烧模态的产生是受到了不同振荡机制的作用,而两种模态间过渡时的双频耦合现象则是两种机制相互竞争的结果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号