首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
将PAN基碳纤维(东邦IM600-6K)在不同温度的酸性及盐类电解质溶液中进行电化学处理。碳纤维的表面性能采用SEM、XPS、亚甲基蓝(MB+)吸附、Raman光谱进行表征。结果发现碳纤维在电化学氧化处理后表面官能团增多而且沟槽加深。电解质及电解液温度对碳纤维表面特定官能团的生成量有影响,羟基和羧基的生成数量最多相差61.38%、98.59%;在酸性电解质溶液中处理的碳纤维表面含氧官能团较多,表面较粗糙。升高电解液温度有助于活性氧对碳纤维表面的氧化刻蚀。处理后的碳纤维表面微晶尺寸最多减少9.75%。  相似文献   

2.
氧化铝气凝胶复合高温隔热瓦的制备及性能   总被引:3,自引:2,他引:1       下载免费PDF全文
以陶瓷纤维制成的高温隔热瓦为骨架,真空浸渍氧化铝溶胶,再经过凝胶、老化和超临界干燥制备出氧化铝气凝胶复合高温隔热瓦,研究了其在不同温度处理后(最高温度1 400℃)的微观结构、隔热和力学性能。结果表明:气凝胶复合高温隔热瓦在1 400℃保温30 min后线收缩率仅为2%;随着热处理温度升高,气凝胶颗粒发生熔并、长大,气凝胶从填充纤维空隙到不断收缩,但对纤维骨架没有明显影响;隔热瓦的室温、高温热导率均显著降低;在热面1 400℃的背温测试中,复合后材料的背温从945℃降到870℃;复合后隔热瓦的力学性能略有增加;但是1 200~1 400℃的压缩强度下降较大。可见,气凝胶复合高温隔热瓦可改善其隔热性能,但在高温下力学性能下降。  相似文献   

3.
利用非稳态阶跃平面热源法对SiO2气凝胶的热参数进行了高温实验研究,获得了不同温度和压力条件下SiO2气凝胶的热导率、热扩散率以及比热容等.结果表明,SiO2气凝胶800℃的热导率比室温增大约62%.在相同气压且低于600℃时,其热导率受比热容影响,而在高于600℃时,则受热扩散率影响;在相同温度且高于10 kPa时,热导率亦受热扩散率影响.  相似文献   

4.
刚性隔热材料的力学性能   总被引:1,自引:1,他引:0       下载免费PDF全文
采用纤维烧结法制备了刚性隔热材料,研究了材料密度、纤维取向、测试温度、与气凝胶复合等因素对材料力学强度的影响规律.结果表明:隔热材料力学强度随着密度的提高而增加;隔热材料平面方向拉伸和压缩强度均达到厚度方向的4倍以上;800和1 000℃下,材料的压缩强度保持率分别达到90%和50%;与气凝胶复合后隔热材料在拉伸强度维持不变的情况下,压缩强度增加35%以上.  相似文献   

5.
纳米孔ZrO_2气凝胶的制备研究   总被引:1,自引:0,他引:1  
以硝酸氧锆(ZrO(NO3)2.5H2O)为原料,采用水热法和超临界干燥技术制备了ZrO2气凝胶.利用SEM和BET等测试手段对所得气凝胶的结构和孔特征进行表征,分析了孔隙分布情况和孔结构.结果表明:气凝胶具有典型的纳米孔隙结构,孔径5<Dp<60nm,比表面积达916.5m2/g,孔分布均匀.对ZrO2凝胶过程进行了探讨.  相似文献   

6.
碳纳米管表面硝酸氧化改性研究   总被引:1,自引:0,他引:1       下载免费PDF全文
利用TEM、XPS、XRD、SEM等测试手段对硝酸处理前后的碳纳米管(CNTs)的状态、结构特性、分散特性及复合材料的端面特征进行了研究.结果表明:浓硝酸氧化处理后CNTs表面的活性官能团有明显增加,CNTs在极性溶剂中分散的均匀性、浓度和稳定性得到提高,在复合材料中的分布均匀性及与树脂的界面结合能力也得到改善,表明浓硝酸氧化是实现CNTs表面改性的一种有效方法.  相似文献   

7.
热处理对纤维增强SiO2气凝胶性能的影响   总被引:1,自引:1,他引:0       下载免费PDF全文
采用溶胶一凝胶法制备了纤维增强SiO_2气凝胶隔热材料,对基体SiO_2气凝胶及复合材料进行不同温度的热处理.利用扫描电镜、比表面积和孔径测试仪和导热仪等手段对处理后材料的微观结构和常温隔热性能进行表征.结果表明:复合材料经低于700℃处理后,材料基体的微观结构略有变化,常温隔热性能基本保持不变;经1000℃处理的纳米结构发生了烧结、纳米孔含量减少,常温隔热性能显著降低.  相似文献   

8.
针对航天器的使用要求,研制了密度≤30 kg/m~3轻质高效的二氧化硅气凝胶复合材料。针对深空探测的应用环境,对低密度气凝胶复合材料在不同条件下的热导率、热循环、热真空和电离总剂量等环境试验进行测试。结果表明,低密度气凝胶复合材料服役温度可达到-145~85℃,在1 kPa CO_2气氛下热导率可达到6.6 mW/(m·K)。获得了不同气氛和不同温度条件下以及同种气氛、不同压力条件下低密度气凝胶复合材料的热导率变化规律,并测试批次性材料热导率,结果表明批次热导率稳定性良好。热循环、热真空和电离辐照试验前后热导率和尺寸收缩率均未变化,表明低密度气凝胶复合材料在深空环境下保持良好的结构和稳定的隔热性能。  相似文献   

9.
热处理对块状氧化铝气凝胶微观结构的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
以AlCl_3·6H_2O为前驱体,无水乙醇和去离子水的混合溶液为溶剂,环氧丙烷为凝胶网络诱导荆,通过溶胶-凝胶技术制备得到溶胶,再经超临界干燥制备出块状氧化铝气凝胶.采用SEM、TEM、XRD、BET等手段,对氧化铝气凝胶在不同热处理温度下的微观结构进行了对比和分析.结果表明,氧化铝气凝胶的主要成分为多晶勃姆石相,微观结构由许多叶片状纤维堆积形成,经500和1 000℃热处理后成块性未受到明显的影响,比表面积各为429和174 m~2/g.在20~1000℃内,氧化铝气凝胶发生了由多晶态勃姆石相→γ-Al_2O_3→δ-Al_2O_3的相转变.  相似文献   

10.
充气式再入与减速系统柔性热防护材料的热冲击试验   总被引:2,自引:0,他引:2  
针对充气式再入与减速系统的柔性热防护系统的研制要求,其应能够承受最高1200℃高温或最高达25 W/cm~2的热流密度、高温环境持续时间不超过100 s。为此设计了多层防热结构的柔性热防护系统,结构由外到内分别是防热层、隔热层、阻气承力层,基于热分析的结果研制了三种材料试样,其中一种试样由Nextel氧化铝织物、气凝胶和Kevlar织物组成,另外两种在其基础上分别增加了柔性烧蚀层材料和氧化铝耐火棉,同时调整了Nextel织物和气凝胶的铺层数量,模拟1200℃的高温环境进行了热冲击试验。试验结果表明,所研制的材料能够满足耐温1200℃、持续时间100 s的要求;Nextel氧化铝织物作为防热层在1200℃下性能稳定,超过650℃时气凝胶快速收缩变形、破坏;在防热层增加耐火棉(毡)后,隔热效果明显提高,并可确保内部的气凝胶保持在分解温度以下。  相似文献   

11.
方波幅度的测量不确定度   总被引:3,自引:1,他引:3  
介绍了用众数法评价方波幅度时的不确定度分析和评价过程;讨论了主要的不确定度来源,包括众数判别区间的影响、波形测量系统幅度测量误差的影响等等;给出了减小不确定度的主要措施,并结合一个实例,给出了方波幅度的不确定度评价结果。  相似文献   

12.
详细地分析了利用吉赫兹横电磁波室进行小体积受试设备(EUT)电磁场抗扰度测试的不确定度。  相似文献   

13.
高校图书馆期刊管理工作需立足本校实际情况,提高期刊信息服务意识及采购质量,建立合理的馆藏期刊结构,创新期刊管理服务措施,拓展期刊服务内涵。高效发挥期刊信息的作用,提高期刊资源利用率,更好地为读者服务。  相似文献   

14.
从几何上分析了迭代格式xn+ 1=φ(xn)所产生的序列收敛于方程根的收敛条件 ,导出了不依赖函数可导性判断迭代序列收敛的收敛定理 ,给出了产生收敛的迭代序列的技巧。  相似文献   

15.
介绍了用标准时间间隔发生器检定秒表时,测量结果不确定度分析和评定过程;讨论了测量不确定度的几个主要来源;通过一组实例,给出了秒表检定不确定度的分析和评定结果,该过程和结论可应用在对于计量标准进行相应指标的不确定度分析上,也可用于估计秒表检定本身的不确定度。  相似文献   

16.
针对数显测高仪各校准点示值误差的校准方法,给出了示值误差的数学模型,并以某校准点为例,对该校准点示值误差的合成标准不确定度和扩展不确定度进行了评定.  相似文献   

17.
作为构建反腐倡廉体系的基础性工作之一,高校廉洁文化教育是从源头上防治腐败的根本之策,关系到整个社会廉洁文化的建设。从打造廉洁文化教育教师主体团队,发挥党团组织的战斗堡垒作用,弘扬廉洁校园文化节、占据网络文化教育阵地等方面,对高校廉洁文化教育载体进行研究,旨在为高校廉洁文化教育提供些许参考意见。  相似文献   

18.
介绍了逻辑分析仪部分参数测量结果的不确定度分析评定方法,评定过程及结论,可应用在对于计量标准进行相应指标的不确定度评定分析上。  相似文献   

19.
按照砝码检定规程中的替代称量法,对砝码进行测量,并根据不确定度评定方法,对砝码测量结果进行不确定度评定。  相似文献   

20.
基于硼粉点火和燃烧特性,介绍了硼粉燃烧热值测试原理和方法,分析了影响硼粉燃烧热值测试不确定度的因素,并对各不确定度分量进行了评定。结果表明,影响硼粉热值测试不确定度的主要因素有:系统热容量的不确定度和助燃剂热值的不确定度;在助燃剂保障硼粉完全燃烧的条件下,减小助燃剂热值的不确定度是提高硼粉热值测试准确度的关键因素。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号