首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
研究了连续石墨纤维和碳纤维增强镁基复合材料的线膨胀系数与纤维的弹性模量和体积含量之间的关系,研究结果表明,复合材料的线膨胀系数随着增强纤维弹性模量和体积含量的增加而减少,镁基复合材料比铝基复合材料具有更低的线膨胀系 数。  相似文献   

2.
对MT700、T700-A及T700-B三种碳纤维拉伸性能、表面形貌、单向板力学性能及网格加筋圆筒轴压稳定性进行逐级对比研究。结果表明:MT700碳纤维拉伸性能达到同级别进口碳纤维水平且具有高模量特征;MT700碳纤维表面均布沟槽的结构特点使得MT700/603复合材料体系表现出良好的界面性能和拉伸-压缩匹配性,单向板压缩强度、层剪强度及弯曲强度均明显高于T700-A/603和T700-B/603;MT700/603网格加筋圆筒轴压破坏强度及模量分别达到870 k N和108.2 GPa,相比于T700-B/603分别提高11.5%和33.1%。MT700碳纤维更适用于制备航天领域结构复杂承力构件。  相似文献   

3.
PMR型增韧聚酰亚胺的制备与性能研究   总被引:2,自引:0,他引:2  
制备了系列PMR型聚酰亚胺基体树脂以及碳纤维增强复合材料(HFPI),系统研究了PMR型聚酰亚胺HFPI基体树脂及复合材料性能.制备的PMR型聚酰亚胺HFPI基体树脂溶液具有良好的储存稳定性,室温下可以存放4个月,不产生沉淀;PMR型聚酰亚胺HFPI基体树脂具有良好的成型性以及优异的热稳定性,热分解温度高达540℃、玻璃化转变温度达到290℃(DMA)、热膨胀系数在40~50ppm/℃之间、较低吸水率(1.0%~1.7%)、优异力学性能;用短切碳纤维增强HFPI,基体树脂与碳纤维具有良好黏附性,制备的复合材料除了具有良好加工成型性能外,更具有优异力学性能,拉伸强度高达107.3MPa,断裂伸长率为5.73%,弯曲强度和弯曲模量分别高达159.8MPa,6.11GPa.  相似文献   

4.
为了考察基于α-BPDA聚酰亚胺复合材料的高温性能,制备了纤维增强复合材料,进行了高温力学和热物理性能的测试。研究结果表明纤维增强复合材料的T5d分解温度为565℃;Tg超过471℃;在450℃下的弯曲强度保持率大于42%,弯曲模量保持率大于55%,短梁剪切强度保持率超过44%;400℃空气热老化50 h后碳纤维复合材料的弯曲强度保持率66%,弯曲模量保持率为95%;300、500℃的石英增强复合材料的热导率分别为0.503和0.657 W/(m.K)。  相似文献   

5.
采用树脂传递模塑(RTM)工艺制备了U-3160碳纤维增强HT-350RTM聚酰亚胺树脂基复合材料(U-3160/HT-350RTM),研究了不同老化温度、老化时间下U-3160/HT-350RTM复合材料的失重率的变化规律,建立聚酰亚胺复合材料老化失效特征与老化时间/老化温度的关系,并通过微观形貌分析阐述了其在热氧老化过程中的失效机理。结果表明:在一定温度下复合材料的失重率变化符合三次多项式的变化规律,复合材料的老化在材料近表面尤为明显,由于氧分子作用,聚酰亚胺树脂发生降解导致孔隙率增加,因此温度越高、老化时间越长老化加速现象越明显。  相似文献   

6.
介绍了聚丙烯短切纤维与不饱和聚酯树脂混合制成的短切纤维复合材料,并经过对比试验,研究聚丙烯短切纤维长度、用量以及稀释剂含量对短切纤维复合材料力学性能的影响。研究证明,低含量短切纤维的加入对不饱和聚酯树脂固化后拉伸强度、弯曲强度、冲击强度等起到了明显的增强作用,同时,纤维的长度对短切纤维复合材料力学性能也有较大的影响。  相似文献   

7.
以预氧丝网胎体积分数为35%、40%和45%针刺织物为坯体,经数次沥青浸渍/炭化、高温石墨化处理后制备C/C复合材料,测定并分析这三种材料的拉伸、压缩、弯曲和剪切强度;采用扫描电子显微镜对其断口形貌进行观察,研究预氧丝网胎体积分数对C/C复合材料力学性能的影响。结果表明:材料的z向力学性能(除了压缩强度)随着预氧丝网胎体积分数的增加呈单调递增关系,材料的xy向力学性能受预氧丝网胎体积分数影响较小。扫描电镜观察显示:材料z向强度主要与针刺形成的轴向纤维束多少、分布等有关。  相似文献   

8.
本文研究了由三种力学性能不同的基体制备的单向碳纤维复合材料的压缩性能及破坏特征,探讨了基体性能对碳纤维复合材料压缩性能的影响。结果表明,复合材料的纵向压缩强度是基体压缩模量、泊松此和拉伸比例极限应变的函数。当纤维体积含量、基体压缩模量和泊松比变化不大时,其纵向压缩强度随基体拉伸比例极限应变的提高而提高;复合材料的横向压缩强度大于基体的压缩强度;当基体的模量降低和韧性增加时,复合材料的横向压缩破坏的破断角增大,横向压缩强度有所降低。  相似文献   

9.
采用熔融共混的方式制备了不同短碳纤维含量增强含二氮杂萘酮聚芳醚酮(PPEK)基复合材料,对复合材料的加工性能、力学性能、摩擦性能、耐热性进行了研究。结果表明:短碳纤维增强复合材料均可以注塑成型;短碳纤维对PPEK的增强作用明显,拉伸强度和弯曲强度均有大幅提高;复合材料中短碳纤维起到了明显的自润滑作用,复合材料的摩擦系数和磨损率均随碳纤维含量的增加而明显降低;短碳纤维的加入进一步提高了复合材料的耐热性。  相似文献   

10.
采用黏胶丝基碳布进行了二维层板C/C复合材料研究。和PAN基碳布进行对比,分别从碳纤维微观结构、表面形貌、碳布物理性能、树脂基复合材料炭化过程残余热应力模拟、C/C复合材料力学和热物理性能表征等方面进行了对比分析和研究。结果表明,2 200℃处理的黏胶丝基碳纤维是非石墨化结构;纤维横断面呈腰子形,碳布纬向纱弯曲。黏胶丝基碳纤维的密度仅1.39 g/cm~3;拉伸模量很低,约50 GPa。炭化过程研究表明,黏胶丝基碳纤维轴向具有持续的正的线膨胀行为,在炭化初期与酚醛树脂的膨胀行为相一致;黏胶丝基碳布增强树脂基材料在800℃的面内自由热应变是PAN基材料的1/8;模拟的炭化过程热应力是PAN基材料的1/60。黏胶丝基C/C层板材料的层剪强度高于PAN基C/C复合材料,达到16.2 MPa;其拉伸强度为46.6 MPa,弯曲强度高达95.5 MPa,拉伸模量与弯曲模量基本一致,约10 GPa。黏胶丝基C/C复合材料在800℃的热导率是6.48 W/(m·K),与PAN基C/C复合材料非常接近;在800℃的线膨胀系数是2.18×10~(-6)/ K,远高于PAN基C/C复合材料的-0.387×10~(-6)/K。总之,黏胶丝基碳纤维由于其表粗糙度大、碳布纬向纱弯曲、极低的拉伸模量、正的轴向线膨胀系数,因而C/C复合材料层剪强度高,成型工艺中热应力低,较PAN基碳纤维更适合于研制不分层的二维C/C复合材料。  相似文献   

11.
制备了三维混杂碳纤维/芳纶纤维增强尼龙复合材料(HY/PA)并对其力学性能进行了测试。研究表明:由于芳纶纤维的加入,使碳纤维增强尼龙复合材料(CF/PA)的抗冲击性能有了显著提高,HY/PA的抗冲击强度随芳纶纤维体积分数的增大而有所提高;另外,HY/PA在改善CF/PA的横向剪切强度的同时,也改善了芳纶纤维增强尼龙复合材料(KF/PA)的纵向剪切强度;同时,混杂效应对HY/PA的弯曲性能的影响最为显著,HY/PA的弯曲强度、弯曲模量均高于任一种单一纤维复合材料。  相似文献   

12.
分别采用SEM、AFM、XPS和TGA对两种国产T700碳纤维和国外东丽T700S碳纤维的表面形貌、表面化学特性以及碳纤维上浆剂耐热性进行了表征,通过纤维性能转化率的计算,考查了T700碳纤维/双马复合材料的界面粘结性能,并通过T700碳纤维/双马复合材料湿热条件处理前后的0o拉伸强度和层间剪切强度测试对复合材料的耐湿热性能进行了表征。研究发现T700碳纤维的表面粗糙度和活性官能团含量等表面特性对双马复合材料的界面粘结性能具有显著影响,进而在一定程度上影响着双马复合材料的耐湿热性能。研究结果表明:国产T700碳纤维/双马树脂复合材料的耐湿热性优于国外同类T700碳纤维双马复合材料。  相似文献   

13.
针对碳纤维复合材料在运载火箭低温贮箱支撑杆中的应用问题,基于碳纤维复合材料单向板力学性能测试结果,对低温贮箱支撑杆的材料和铺层进行了设计,并通过静力学仿真分析对设计方案进行了验证,结果表明:在298 K和77 K温度下,T800单向板的力学性能均优于T700单向板,更适于制造低温贮箱支撑杆;以9°为主角度铺设72层T800增强纤维的低温贮箱支撑杆,其298 K和77 K温度下的拉伸强度和压缩强度可以很好地满足运载火箭低温贮箱支撑杆的设计强度要求。  相似文献   

14.
针对复合材料在液氮温度下的应用需求,采用RTM工艺制备了几种碳/环氧复合材料,评价了这几种复合材料在80℃、室温和-196℃下的弯曲、压缩、层剪、冲击性能和室温下的GⅠC、GⅡC。结果显示:随着测试温度的降低,复合材料的弯曲强度、压缩强度、冲击强度明显提高;而低温对复合材料模量的影响较小。树脂基体的韧性对复合材料的强度、模量等性能影响不大,而碳纤维种类对复合材料的强度和模量影响较大。树脂基体韧性和碳纤维种类均不改变复合材料力学性能随测试温度变化的趋势。树脂基体韧性和碳纤维种类均会影响复合材料的层间断裂韧性,其中高韧性树脂基体可更加明显地提高复合材料的层间断裂韧性;M40级经编织物/R608-2复合材料GⅠC高达868 J/m2、GⅡC高达2 750 J/m2,但采用高韧性基体的复合材料Tg会有所降低。  相似文献   

15.
采用拉伸试验和有限元分析方法研究纤维增强树脂基复合材料螺栓连接与胶–螺混合连接结构的失效机理。通过拉伸–剪切试验分析其载荷–位移曲线,结合有限元仿真结果及断面微观结构变化分析其结构强度和失效机理。结果表明,螺栓连接结构孔周碳纤维丝束受到螺栓挤压力变形后传递给树脂基体。因此,呈现纤维屈曲变形,树脂基体由均匀分布状被断裂的纤维短束挤压变成团簇状,形成结构不均匀而出现薄弱区域。胶–螺混合连接结构呈现拉伸断裂式破坏,断口处碳纤维丝束在拉伸–剪切作用下从环氧树脂基体中拔出并损伤断裂,丝束方向杂乱排布。附着在碳纤维丝束周围的树脂基体从均匀分布状变为团聚状,连接结构在达到极限载荷之后出现拉伸断裂,呈现净截面破坏,并且在重新分配载荷之后板材之间的胶粘剂对纤维的破坏会起延滞作用。材料强度、螺栓强度、胶层强度及螺栓宽径比等因素均会成为影响连接结构失效破坏的因素。  相似文献   

16.
采用复合分散工艺将纳米TiO_2均匀分散于环氧树脂中,制备了环氧-纳米TiO_2树脂浇铸体,并采用湿法缠绕工艺制备了T700碳纤维增强环氧复合材料(C_f/E)以及T700碳纤维增强环氧-纳米TiO_2(C_f/ETiO_2)复合材料NOL环与Φ150 mm容器,研究了纳米TiO_2对环氧树脂浇铸体、复合材料NOL环和Φ150 mm容器性能的影响。结果表明,纳米TiO_2的加入对环氧基体和C_f/E复合材料均有不同程度的增强、增韧效果,其中环氧基体的拉伸强度提高了9.2%,弯曲强度提高了9.8%,冲击强度提高了52.9%;C_f/E-TiO_2复合材料NOL环层剪强度达到87.7 MPa,提高了22.3%;Φ150 mm容器特性系数达到43.4 km,纤维强度发挥率达到94.3%,分别提高了9.9%和3.3%。  相似文献   

17.
采用扫描电子显微镜(SEM)、反气相色谱(IGC)和X射线光电子能谱仪(XPS)对国产T700级碳纤维和东丽T700S碳纤维的表面形貌、表面能和表面化学特性进行表征,测试两种碳纤维增强双马树脂基复合材料的力学性能,考察国产碳纤维复合材料的界面黏结性能、韧性和湿热性能。结果表明:碳纤维表面特性(表面形貌、表面能和表面化学组成等)对复合材料界面黏结性能具有显著影响;国产T700级碳纤维/QY9611复合材料在室温下的界面黏结性能优于T700S/QY9611复合材料;国产T700级碳纤维/QY9611复合材料的韧性优异,冲击后压缩强度达到了国外先进复合材料IM7/5250-4的水平;经湿热处理后的层间剪切强度仍与T700S/QY9611复合材料相当,说明国产T700级碳纤维/QY9611复合材料具备良好的湿热性能。  相似文献   

18.
使用碳纤维平纹布、玻璃纤维平纹布/环氧树脂预浸料制备了一种混合织物增强复合材料,并对其拉伸、弯曲、层间剪切性能以及导电性能进行了测试表征。结果表明,在-50~200℃,制备的混合织物增强复合材料的拉伸、弯曲强度相对纯玻璃纤维布增强复合材料下降,拉伸、弯曲模量均提高,两种复合材料的层剪强度保持不变;此外,碳纤维布预浸料的加入,降低了复合材料的密度,增加了导电性能,拓宽了玻璃布增强复合材料的应用范围。  相似文献   

19.
聚酰亚胺导电复合材料的制备及性能   总被引:1,自引:0,他引:1       下载免费PDF全文
采用片状石墨(GP)、短切碳纤维(SCF)及长碳纤维(LCF)为导电填料,利用高温模压成型的方法制备聚酰亚胺导电复合材料.研究了采用丙酮溶剂化处理、浓硝酸常温氧化、气相高温氧化三种处理填料的方法及导电填料的复配对复合材料体积电阻率和力学性能的影响,在PI∶GP∶CF=2∶7∶1配比时,其体积电阻率可达1.52×10-2Ω·cm,弯曲强度达48 MPa.  相似文献   

20.
使用不同织造方式(二维机织,法向增强2.5维机织和三维五向编织)制备了3种SiC纤维预制体,采用树脂转移模塑(RTM)和聚合物浸渍裂解(PIP)工艺制备了SiC_f/PyC/SiBCN复合材料。观察复合材料的显微组织,测试弯曲强度、拉伸强度、压缩强度等力学性能,探究不同预制体结构对复合材料力学性能的影响行为。结果表明:同一预制体结构在不同方向的纤维分布不同导致材料力学性能的各向异性;不同预制体结构对材料力学性能有着显著的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号