首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
采用扫描电子显微镜(SEM)、反气相色谱(IGC)和X射线光电子能谱仪(XPS)对国产T700级碳纤维和东丽T700S碳纤维的表面形貌、表面能和表面化学特性进行表征,测试两种碳纤维增强双马树脂基复合材料的力学性能,考察国产碳纤维复合材料的界面黏结性能、韧性和湿热性能。结果表明:碳纤维表面特性(表面形貌、表面能和表面化学组成等)对复合材料界面黏结性能具有显著影响;国产T700级碳纤维/QY9611复合材料在室温下的界面黏结性能优于T700S/QY9611复合材料;国产T700级碳纤维/QY9611复合材料的韧性优异,冲击后压缩强度达到了国外先进复合材料IM7/5250-4的水平;经湿热处理后的层间剪切强度仍与T700S/QY9611复合材料相当,说明国产T700级碳纤维/QY9611复合材料具备良好的湿热性能。  相似文献   

2.
T700级碳纤维/QY9611双马树脂复合材料界面性能研究   总被引:1,自引:0,他引:1  
采用SEM和AFM对国产T700级碳纤维和东丽T700S碳纤维的表面形貌进行了表征,利用热熔法预浸料制备了T700级碳纤维/QY9611复合材料,并考察了复合材料的界面性能。研究结果表明,碳纤维的形貌对复合材料界面性能有显著影响,国产T700级碳纤维/QY9611复合材料的室温界面性能优于T700S/QY9611复合材料,且湿热处理后的界面结合强度仍高于T700S/QY9611复合材料,说明国产碳纤维T700级碳纤维/QY9611复合材料已具备良好的耐湿热性能。  相似文献   

3.
几种碳纤维/双马树脂复合材料湿热特性实验研究   总被引:3,自引:0,他引:3  
齐磊  李敏  顾轶卓  孙志杰  张佐光 《航空学报》2009,30(12):2476-2480
 针对碳纤维/双马树脂体系,研究了不同湿热条件、不同碳纤维种类和预浸料制备方法下复合材料层板的湿热特性,通过考察吸湿量、动态力学性能、弯曲性能及其断口形貌等方面分析了各因素对复合材料吸湿特性的影响规律。结果表明,在实验范围内不同湿热条件下水分主要引起复合材料发生了物理变化,而没有发生明显的化学变化;国产T300级碳纤维复合材料湿热性能偏低,这与其界面粘结性能较弱有一致性;与干法预浸料相比,湿法预浸料制备的复合材料层板湿热性能明显偏低,说明溶剂对双马树脂复合材料的界面性能和吸湿性有重要影响。  相似文献   

4.
为了研究工艺温度对复合材料界面的调控作用,设计采用三阶段固化工艺(即扩散、固化和后固化),考察了不同温度制度下3种碳纤维/双马树脂(BMI)复合材料界面粘结性能的变化规律。采用原子力显微镜(AFM)和傅里叶变换红外光谱(FTIR)深入分析了上浆剂对纤维表面粗糙度和化学特性的影响,研究了上浆剂的反应活性及其与双马树脂的反应性,采用微珠脱粘方法测试了碳纤维/树脂的界面剪切强度(IFSSs)。结果表明,200℃处理2h后3种碳纤维上浆剂均发生部分反应,并且170℃,2h后上浆剂均与双马树脂发生化学反应。对比不同温度条件可以发现后固化阶段对碳纤维/双马体系的界面剪切强度影响显著,未经后固化的复合材料界面性能最低;110℃和140℃恒温扩散阶段对碳纤维/双马体系的界面剪切强度的影响不明显。同种温度条件下,CF1和CF3上浆剂与双马树脂的反应程度高于CF2,相应的CF1和CF3与双马树脂的界面剪切强度较高,表明上浆剂与双马树脂间的化学反应程度是影响其界面粘结性能的主要因素。该研究结果对我国碳纤维上浆剂的研制具有参考价值。  相似文献   

5.
采用冷等离子体对碳纤维缝编织物进行表面处理 ,并采用XRD对处理前后的碳纤维表面结构进行了分析 ,研究了冷等离子体处理对浸润性以及碳纤维缝编织物 /环氧复合材料的层间剪切强度的影响。实验结果表明 ,冷等离子体处理提高了碳纤维表面活性、浸润性 ,从而改善了碳纤维缝编织物 /环氧复合材料的界面粘结性能 ,进而改善了复合材料的界面性能。  相似文献   

6.
碳纤维表面特征对碳/环氧复合材料界面性能的影响   总被引:1,自引:1,他引:0       下载免费PDF全文
为了研究碳纤维表面特征与碳/环氧复合材料界面剪切强度的定量关系。采用扫描电子显微镜、比表面积分析仪、X射线光电子能谱仪对T800级碳纤维表面形貌、比表面积和表面化学特征进行了测试表征,并使用微珠脱粘法测试了复合材料的界面剪切强度(IFSS)。基于碳纤维比表面积测试结果,引入真实界面面积的概念,重点分析了界面面积和化学特征对IFSS的影响机理和规律。结果表明,不同表面状态的T800级碳纤维比表面积存在明显差异,两种除浆工艺处理的碳纤维比表面积相差25.4%。消除界面面积影响的真实界面剪切强度(IFSS’)与碳纤维表面氧碳比呈现出较好的线性相关性,R2达到了0.94。反映出提高碳纤维比表面积和表面氧碳比是改善复合材料界面性能的有效手段;同时,也为定量研究碳纤维表面物理和化学特征对复合材料界面性能的影响提供了一种新的分析思路。  相似文献   

7.
为了研究碳纤维表面特征与碳/环氧复合材料界面剪切强度的定量关系。采用扫描电子显微镜、比表面积分析仪、X射线光电子能谱仪对T800级碳纤维表面形貌、比表面积和表面化学特征进行了测试表征,并使用微珠脱粘法测试了复合材料的界面剪切强度(IFSS)。基于碳纤维比表面积测试结果,引入真实界面面积的概念,重点分析了界面面积和化学特征对IFSS的影响机理和规律。结果表明,不同表面状态的T800级碳纤维比表面积存在明显差异,两种除浆方法处理的碳纤维比表面积相差25.4%。消除界面面积影响的真实界面剪切强度(IFSS’)与碳纤维表面氧碳比呈现出较好的线性相关性,R2达到了0.94。反映出提高碳纤维比表面积和表面氧碳比是改善复合材料界面性能的有效手段。同时,也为定量研究碳纤维表面物理和化学特征对复合材料界面性能的影响提供了一种新的分析思路。  相似文献   

8.
采用冷等离子体接枝法对碳纤维织物进行表面处理,在纤维表面产生活性官能团,研究了冷等离子体接枝处理对碳纤维织物/环氧复合材料的层间剪切强度的影响。实验结果表明,冷等离子体接枝处理提高了碳纤维表面活性,从而改善了碳纤维织物/环氧复合材料的界面粘结性能,进而改善了复合材料的界面性能。  相似文献   

9.
PBO-C/ E 复合材料的界面及压力容器性能   总被引:1,自引:1,他引:0       下载免费PDF全文
研究了PBO纤维与T700碳纤维混杂复合材料的界面性能和压力容器性能。采用层间剪切强度测试和吸水率测试研究了不同混杂比对混杂复合材料界面粘接性能和吸水性能的影响。研制了PBO纤维与T700碳纤维混杂复合材料Ф150 mm压力容器,对容器的水压爆破性能和轴压承载性能进行了测试。结果表明:混杂复合材料的层间剪切强度随着混杂比增大逐渐升高,当T700碳纤维含量较低时,混杂复合材料界面粘接性能提高并不明显;混杂复合材料的吸水率介于PBO纤维和T700碳纤维复合材料之间,近似符合"混合定律",界面数对混杂复合材料吸水性影响较大;混杂复合材料Ф150 mm容器的PV/W随着混杂比增大逐渐降低,混杂工艺能够使PBO纤维复合材料容器的轴压承载性能提高31%。  相似文献   

10.
对MT700、T700-A及T700-B三种碳纤维拉伸性能、表面形貌、单向板力学性能及网格加筋圆筒轴压稳定性进行逐级对比研究。结果表明:MT700碳纤维拉伸性能达到同级别进口碳纤维水平且具有高模量特征;MT700碳纤维表面均布沟槽的结构特点使得MT700/603复合材料体系表现出良好的界面性能和拉伸-压缩匹配性,单向板压缩强度、层剪强度及弯曲强度均明显高于T700-A/603和T700-B/603;MT700/603网格加筋圆筒轴压破坏强度及模量分别达到870 k N和108.2 GPa,相比于T700-B/603分别提高11.5%和33.1%。MT700碳纤维更适用于制备航天领域结构复杂承力构件。  相似文献   

11.
采用扫描电镜、红外图谱分析三种国产T800级碳纤维的物理形貌以及表面上浆剂的化学结构。针对三种国产T800级碳纤维(CCF800)/环氧树脂复合材料在湿热环境下的吸湿行为,研究经不同时间湿热和高温环境下处理后的层间剪切性能,并通过扫描电镜观察湿热处理后的复合材料界面结合状态。结果表明:三种国产T800级碳纤维表面物理形貌相同,而表面化学结构存在一定差异;三种碳纤维环氧复合材料的"饱和"吸湿周期相同,约为54 d,95%饱和吸湿周期也相同,约为30 d;而饱和吸湿量存在明显差异,其中3号纤维上浆剂中由于羟基含量最高,导致其环氧树脂基复合材料吸湿率最高,在高温高湿作用下,层间剪切强度下降最为明显。  相似文献   

12.
碳纤维增强可溶性聚芳醚树脂基复合材料的表面与界面   总被引:1,自引:0,他引:1  
首次对碳纤维增强含二氮杂萘酮联苯型聚芳醚砜酮(PPESK)基高性能热塑性树脂基复合材料的界面进行了研究。采用空气冷等离子体处理方法对碳纤维表面进行处理。用XPS测试分析了不同等离子体处理时间对CF-原丝表面元素组成的影响及其变化规律。用FT-IR测试分析了经等离子体处理前后碳纤维表面的官能团的变化。采用动态接触角测试分析了不同处理时间下,碳纤维浸润性的变化规律,进一步分析了复合材料界面的粘结机理。采用AFM测试分析等离子体处理时间对碳纤维表面粗糙度的影响。利用ILSS测试方法表征了碳纤维/PPESK复合材料的层间剪切强度,确定了最佳的等离子体处理条件。利用SEM观察了碳纤维/PPESK树脂基复合材料的层间剪切破坏形貌。结果表明:对碳纤维的最佳的等离子体处理条件为:处理功率200W,处理时间15m in。在这一条件下处理碳纤维,复合材料的ILSS值最达可提高13.5%。经过适当的等离子体处理后,碳纤维表面的极性基团的含量、浸润性能和粗糙度均得到改善,增强纤维与树脂基体间界面的粘结性能得到提高,从而提高了复合材料的力学性能。  相似文献   

13.
文摘以某重要型号产品高强碳纤维材料国产化为研究背景,开展了CCF700-12K碳纤维及其复合材料力学性能、耐空间环境性能以及热性能研究。结果表明,国产CCF700-12K碳纤维拉伸强度为4 706 MPa,拉伸模量为268 GPa;CCF700-12K/F46复合材料单向板拉伸强度为1 958.8 MPa,拉伸模量为144.79 GPa;CCF700-12K碳纤维的力学性能优异,工艺性能稳定,能够满足复合材料结构工程应用要求。  相似文献   

14.
湿热老化对T700/3234复合材料力学性能影响研究   总被引:1,自引:0,他引:1  
在室温及70℃条件下对单向T700/3234复合材料进行了湿热老化试验,分别测试了经历不同吸湿时间后材料的吸湿率、层间剪切强度和弯曲强度,并且利用扫描电镜(SEM)对力学性能试样的断口形貌进行了分析.结果表明,吸湿温度越高,饱和吸湿率越高.T700/3234复合材料具有良好的耐湿热性能,其层间剪切强度、弯曲强度保持率分别为69.33%和76.06%.吸湿使界面出现一定程度的脱粘是导致其力学性能下降的主要原因.  相似文献   

15.
碳纤维表面性质分析及其对复合材料界面性能的影响   总被引:7,自引:1,他引:6  
研究了T300-3K和T300-6K碳纤维的表面物理和化学特性,并对其与环氧树脂复合材料体系的界面性能进行了测试与分析。结果表明T300-6K碳纤维表面的O/C比和活性碳原子比例均高于T300-3K碳纤维。T300-6K碳纤维表面沟槽深度、宽度和长度均大于T300-3K碳纤维但表面粗糙度较小。T300-6K碳纤维环氧树脂体系的界面剪切强度与相应的T300-3K体系基本相当。  相似文献   

16.
探讨了树脂基体、碳纤维增强体以及树脂基体 纤维的界面等对双马来酰亚胺 (简称双马 )树脂基复合材料冲击后压缩强度 (CAI)值的影响 ,指出降低树脂基体的交联密度和产生微观两相结构是提高碳纤维 /双马复合材料CAI值的两个典型方法。合适的树脂含量有利于保持复合材料体系较高的CAI值 ,采用高强高韧性的碳纤维可明显提高复合材料体系的CAI值。为获得较高的CAI值 ,保持合适的树脂基体 纤维界面性能也是必要的  相似文献   

17.
复合材料界面工程一直是碳纤维树脂基复合材料的热点研究方向,界面相作为碳纤维增强体和树脂基体间传递载荷的"桥梁",影响复合材料的刚度强度发挥效率,因而界面相的设计与调控对于复合材料界面增强和提高宏观力学性能具有重要意义。针对高强/高模碳纤维表面物理化学特性、树脂基体的性能匹配以及不同类石墨结构表面等影响因素,简述了碳纤维表面结构、树脂基体模量与界面增强的关联机制,耐高温和分子自组装新型界面相构筑的进展及其界面增强效果,提出了复合材料刚柔平衡界面相的发展策略。  相似文献   

18.
研究了湿热环境对碳纤维/树脂复合材料静力拉伸和压缩性能的影响.对T700/5428体系的复合材料中心开孔试件进行了常温、吸湿后常温、吸湿后75℃、吸湿后105℃环境下的静力拉伸和压缩试验.  相似文献   

19.
碳纤维复合材料界面性能研究   总被引:13,自引:1,他引:13       下载免费PDF全文
针对碳纤维复合材料中普遍存在的界面问题,首先研究了碳纤维表面改性对其复合材料界面性能的影响。采用电化学方法和γ射线辐照技术对碳纤维进行表面改性处理,通过处理前后纤维性质及其复合材料界面性能的分析,阐明了纤维表面改性对复合材料界面性能影响规律。同时,研究了电子束固化技术中存在的弱界面问题,通过对电子束固化机理的研究发现增强体表面化学成分对固化过程影响较大,合理的偶联剂选择可以使电子束固化复合材料界面粘合性能得到提高。此外,研究了碳纤维超声连续处理,通过对树脂基体和碳纤维表面性质的分析,说明超声处理可有效地改善复合材料界面性能。  相似文献   

20.
等离子体处理对T700/环氧复合材料湿热性能的影响   总被引:1,自引:1,他引:0  
研究了等离子体处理对T700/环氧复合材料湿热性能的影响。考察了该复合材料在50℃和80℃的3.5%NaCl水溶液中的吸湿特性和层间剪切强度的变化,并用SEM观察了层间剪切试样断口形貌。结果表明,该复合材料的吸湿行为符合Fick第二定律;随着温度升高平衡吸湿率和扩散系数均增大;经过等离子体处理的复合材料平衡吸湿率比未经处理的平衡吸湿率明显降低;等离子体处理能够提高界面结合强度,吸湿后其层间剪切强度保持率显著提高;SEM结果表明,复合材料的性能变化是由基体破坏和界面脱粘引起的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号