首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
开孔的存在会显著地降低复合材料结构的强度。基于应力场强法的思想,提出了一个预测含圆孔复合材料层合板剩余强度的工程简化模型。采用大量试验数据,对本文提出的应力场强法模型与其他典型的特征距离法模型进行了评估分析。结果表明,应力场强法和平均应力准则法预测能力要优于点应力准则法和损伤区域准则法,应力场强法预测值与试验吻合程度略优于平均应力准则法。  相似文献   

2.
工程构件疲劳寿命估算的三维临界域法   总被引:1,自引:0,他引:1  
临界域法将缺口附近区域中某点、线或面上的应力特征值作为材料失效的判断条件,能较合理地解释缺口效应现象,因此被认为是一类具有工程应用前景的缺口件疲劳寿命估算方法。本文首先结合三维工程结构的实际特点,详细阐述了适用于三维结构的应力场强法和临界距离法,对其中若干参数进行了准确定义和描述。然后,本文分别使用这两种方法和名义应力法对某型航空发动机轮盘进行了疲劳寿命估算。结果表明,本文给出的适用于三维结构的应力场强法、临界距离法能很好地预测航空发动机轮盘的疲劳寿命;而且相比于名义应力法,预测效果更好。  相似文献   

3.
提出了一个缺口件疲劳强度分散性的估算方法,该方法只需要材料P-S-N曲线和缺口件的几何信息.影响缺口件疲劳强度分布的因素主要有材料的分散性和缺口效应的分散性两部分.本文采用改进的相等破坏概率方法求出光滑件的疲劳强度分布,该方法可充分考虑成组和升降法疲劳试验结果,由应力场强法和历史信息获得疲劳缺口系数的分布,并由此得到缺口件疲劳强度分布.完成了2024-T3和7075-T6铝合金的8个算例,结果表明该方法所得结果令人满意.  相似文献   

4.
基于局部应力应变法估算高周疲劳寿命   总被引:8,自引:0,他引:8  
以往用局部应力应变法计算结构高周疲劳寿命不好的主要原因是在损伤与寿命计算中没有考虑缺口应力梯度等的影响。文中利用疲劳缺口系数对应变-寿命曲线的弹性分量进行修正,从而可以较好地反映缺口根部应力梯度等对疲劳寿命的影响,使得局部应力应变法不仅可适用于低周疲劳寿命分析,也用可以用于高周疲劳寿命分析。文中给出的方法简单,精度了,便于工程应用。  相似文献   

5.
多缺口应力集中系数有限元研究   总被引:4,自引:0,他引:4  
利用ANSYS5.7软件对半无限大板多重边缺口和半无限大体多重面缺口的应力集中系数进行了计算,该方法简单易行,省时省力;并将所得数据与试验结果作了对比,两者吻合较为一致,说明利用该软件分析多重应力集中问题有效可行。研究结果表明:二维和三级多缺口应力集中变化规律十分相似,在缺口排列方向承受单向拉力(压力)时,多缺口的存在可以缓和集中应力,松驰作用随缺口数的增加而增加,端部缺口应力集中较高,而中间缺口应力集中较低;对于半无限大体面缺口,在缺口排列垂直方向承受单向拉力(压力)时,多缺口的存在加剧集中应力,加剧作用随缺口数的增加而增加,当缺口相切时,加剧作用最大。  相似文献   

6.
低温风洞运行过程消耗大量液氮和电力,洞体结构产生附加热应力和热变形,建立可靠的低温风洞热力学模型对研究风洞运行安全性和经济性是必不可少的。以低温风洞扩散段为方法研究对象,建立有限元热力学模型,为提高热力学模型和实际模型的相关性,使用响应面法对有限元热力学模型多个参数进行修正。通过对比分析温度、应力监测点试验数据和仿真数据的差别,确定驻室锥形体内表面对流换热系数为待修正参数;使用中心复合试验设计生成有限元热分析样本空间,以温度、应力监测点试验数据和仿真数据的残差均方和为考核指标,在样本空间内对残差均方和进行非线性回归分析,建立残差均方和的响应面模型;以所有监测点残差均方和总和为目标函数,在样本空间内进行多目标非线性优化分析,得到最优解;验证修正后的热力学模型,结果表明:(1)基于响应面法的热力学模型修正是可行的;(2)修正后的热力学模型分析数据与试验数据吻合性提高,并且适用于其它降温试验。  相似文献   

7.
对在EXCO溶液中预腐蚀后的LC4CS光滑试件和缺口试件进行疲劳试验,得到不同预腐蚀时间的S-N曲线及预腐蚀疲劳缺口系数。通过分析腐蚀过程,阐述了腐蚀对疲劳缺口系数的影响机理,建立了描述预腐蚀疲劳缺口系数的两参数模型,并进行了试验验证。结果表明:LC4CS材料的疲劳缺口系数随预腐蚀时间呈现出先降后升的变化趋势,其拐点出现在剥蚀开始阶段。  相似文献   

8.
ξ为区域D上的亚纯函数族,族中每一个函数f只有重级≥k的零点,ξ是区域D上的正规族当且仅当,存在一个至少包含k+4个元素的集合E∩←C∪{∞},使得对D的任一紧子集K都存在常数M(K)(依赖于K),对一切f∈ξ,f(z)∈E及z∈K都有|f^(k)(z)|/1+|f(z)|^k+1≤M(K)特别地,对区域D上的全纯族ξ,E只要包含3个有穷元素。  相似文献   

9.
针对安装在超临界翼型后部的微型涡流发生器减阻问题,先用风洞实验测出微型涡流发生器对超临界翼型升阻特性的影响,然后采用RANS方程和κ-ε湍流模型进行数值模拟,分析安装在超临界翼型后部的微型涡流发生器减阻原因。研究发现:微型涡流发生器使下游近壁面处低能气体向上卷起与外层高能气体掺混,近壁面平均湍动能增加、翼型后部脉动压强增大,压差阻力减小;湍流应力由速度梯度、湍流粘性系数和脉动压强共同决定,虽然气流掺混,弦向速度法向梯度减小、湍流粘性系数减小,但展向速度法向梯度和脉动压强增大,湍流应力增大,摩擦阻力增大;微型涡流发生器尺寸很小,完全浸没于附面层内,仅掺混与它高度相当的附面层内流体,对附面层厚度影响小,对翼型升力影响小。  相似文献   

10.
断裂力学在推进剂贮箱安全评定中的应用   总被引:5,自引:0,他引:5  
介绍了断裂力学在火箭推进剂贮箱安全评定中的应用。首先对贮箱进行了应力分析。然后,通过对贮箱结构的合理简化,将线弹簧模型应用到其中未穿透裂纹应力强度因子的求解。最后,介绍了一种断裂韧性的测试方法。数值和试验结果表明,方法是简便可靠的。  相似文献   

11.
V型缺口根部裂纹应力强度因子的有限元分析   总被引:1,自引:0,他引:1  
各种宏微观缺口会导致局部的应力/应变集中,疲劳裂纹往往萌生于缺口根部,缺口根部与裂纹前沿的三维应力场相互作用使得缺口根部裂纹前沿的应力场非常复杂,很难得到精确的解析解.文中利用三维有限元方法系统研究了V型缺口根部裂纹前沿的三维应力场,分析了缺口约束对裂纹前沿应力状态的影响,建立了考虑缺口约束影响的应力强度因子经验解,对实际应用具有指导意义.  相似文献   

12.
飞机座舱有机玻璃结构疲劳寿命估算的局部应力法   总被引:1,自引:0,他引:1  
基于飞机座舱有机玻璃为脆性材料的特性,提出估算飞机座舱有机玻璃结构件疲劳寿命的局部应力法。它以缺口件韧带上距离缺口根部d处的局部应力为参数,对照光滑试验件的S-N曲线,利用线性累积损伤理论,可以较好地预测结构件的疲劳寿命。对飞机座舱有机玻璃YB3的三种结构件进行了疲劳试验和寿命分析,结果表明:寿命估算结果与试验结果吻合较好。  相似文献   

13.
高周疲劳裂纹萌生的非线性微观力学模型   总被引:4,自引:0,他引:4  
简要介绍了高周疲劳裂纹萌生的微观力学模型,如滑移带挤出模型,位错塞积模型和位错反应模型等。  相似文献   

14.
ANEWEXPRESSIONOFFATIGUESIZEFACTOR¥YaoWeixing(DepartmentofAircraftEngineering,NUAA29YudaoStreet,Nanjing210016,P.R.China)Abstra...  相似文献   

15.
基于灰色系统GM(1,1)模型的疲劳寿命预测方法   总被引:5,自引:1,他引:4  
将疲劳现象视为存在于一个灰色系统中,提出了运用灰色系统理论,通过建立灰色系统GM(1,1)模型预测构件疲劳寿命的新方法。对某试件的实验数据进行分析和计算。结果表明,该方法使疲劳寿命预测误差由原来的61.4%减小到24.1%,预测结果偏于安全,说明该方法具有较好的预测精度和工程实用价值。  相似文献   

16.
建立了考虑腐蚀影响的耐久性分析相对小裂纹扩展公式。将腐蚀条件下结构使用过程简化为相互独立的停放预腐蚀和腐蚀疲劳过程。以一般环境下的耐久性分析相对小裂纹扩展公式为基础。考虑地面停放环境和腐蚀疲劳的影响。引入地面停放预腐蚀影响系数和腐蚀疲劳影响系数,建立腐蚀条件下考虑环境影响和应力水平的裂纹扩展模型。为腐蚀条件下结构耐久性分析奠定基础。  相似文献   

17.
提出了一种针对铆接结构进行疲劳寿命评估的新方法。首先,运用弹塑性理论模型求解出铆接造成的铆钉孔周边的残余应力。然后,通过三维弹塑性、接触非线性有限元分析(Finite element method,FEM),计算出载荷传递引起的铆钉孔周围的应力分布。将这两个应力场进行叠加,并将沿径向距离疲劳危险部位应力最大处特定距离的点的应力,对照相关材料的光滑试件S-N曲线进行插值,得到疲劳寿命的评估结果。新方法与应力严重系数法(Stress severity factor,SSF)法进行了对比,并通过试验验证了该方法的可行性和准确性。  相似文献   

18.
本文进行了多种“疲劳 腐蚀”模式的损伤累积试验,研究了“机械载荷”和“腐蚀载荷”的相互影响,提出了腐蚀环境作用后疲劳累积损伤的竞争模型。与试验结果的比较表明在“疲劳 腐蚀 疲劳……”的加载模式下竞争模型与试验结果吻合较好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号