首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 766 毫秒
1.
二次电子发射系数(secondary electron yield,SEY)的抑制对提高空间大功率微波部件的微放电阈值、降低粒子加速器发生电子云效应的风险等具有重要意义。针对现有圆柱形柱状阵列SEY抑制方法,未考虑实际加工工艺可能导致柱体形貌偏差,进而影响SEY抑制效应的问题,结合二次电子发射唯象概率模型和电子运动轨迹射线追踪法,研究了圆形、方形、圆锥形、截断圆锥形、方锥形、沙漏形及螺纹形柱状阵列的SEY。模拟结果表明:与理想圆柱形柱状阵列相比,方形、方锥形、螺纹形柱状阵列的SEY抑制效应与圆柱阵列基本相同(差异小于~6%),而其余几种形状的柱状阵列的SEY抑制效应略逊于理想圆柱阵列。因此,从SEY抑制效应角度看,圆柱形柱状阵列具有较好的工艺容差性能。研究结果为柱状阵列结构在SEY抑制领域的工程化研究与应用提供了参考。  相似文献   

2.
为了精确测量材料在不同入射电子能量和入射电子角度下的二次电子产额(secondary electron yield,SEY)以及二次电子能谱,研制了收集极为球形结构的SEY测量装置。首先介绍了装置的构成、测量原理及中和方法,并对测得的信号波形进行了分析。随后,测量了Cu材料和Al2O3薄膜材料的SEY值和二次电子能谱。结果表明:不同入射电子能量下SEY值的标准偏差分别小于0.055(Cu)和0.126(Al2O3);不同入射电子角度下SEY值与理论模型符合的很好,拟合R2值为0998 64(Cu);出射的二次电子能量绝大部分集中在10eV(Cu)和20eV(Al2O3)以下,符合相关理论预期。  相似文献   

3.
暴露于空气中的金属受环境影响,表面会产生吸附、沾污和氧化等表面改性作用,引起二次电子产额(secondary electron yield,SEY)变化。为探究银表面改性对SEY的影响,使用加热、有机清洗、离子清洗实现了多种银表面状态。实验结果显示,加热能够去除部分表面吸附和沾污,并使得SEY降低;离子清洗在去除表面吸附和沾污的同时还能够剥离表面氧化层,获得高度洁净的表面。离子清洗10/30分钟后SEY峰值由2.61降至1.73/1.70,说明剥离银表面的吸附、沾污和氧化层能使得SEY明显降低。为验证氧化对SEY的影响,使用磁控溅射制备氧化银薄膜。结果表明,氧化银SEY仅比银高0.1左右,且在斜入射下两者SEY差异更小,该结果证明银表面发生氧化不会使得SEY明显升高,并间接说明表面吸附和沾污是使得银表面SEY升高的主要因素。  相似文献   

4.
固体介质的二次电子发射受到材料成分、元素构成、表面状况等因素影响,其中表面状况对于二次电子发射系数起着至关重要的作用,表面微结构调控入射电子在材料表面的运动状态和碰撞频率,进而影响二次电子发射。基于粒子路径追踪算法,建立了一次电子与材料表面碰撞模型,研究了微孔阵列结构参数对二次电子发射系数的调控机制,分析了微孔阵列单元深度、孔径和面积占比的影响规律。研究发现,通过设置合理的结构单元深度和宽度,可以实现对二次电子发射系数的调节。单元孔径宽度为2mm、深度为5mm、数目为169时,二次电子发射系数降低了57%。研究结论可为脉冲功率、航天领域的沿面放电机理分析和抑制提供理论和数据支撑。  相似文献   

5.
为了深入研究多层薄膜材料中二次电子发射这一影响部件微放电效应的重要物理过程,基于金属表面多代二次电子发射蒙特卡罗模型,建立了多层薄膜二次电子发射蒙特卡罗模型,并构建了多层薄膜的平面和矩形沟槽这两种表面结构。通过对这两种表面的多层薄膜二次电子发射系数进行蒙特卡罗模拟,并对不同薄膜厚度的二次电子发射系数模拟结果进行分析,验证了多层薄膜抑制二次电子产额的实验效果,并得出抑制效果与多层薄膜厚度和表面结构有关的结论。  相似文献   

6.
空间大功率微波器件受空间环境因素的影响,易于发生微放电效应导致器件性能退化甚至失效。二次电子产额(Secondary Electron Yield,SEY)大于1是诱导空间材料表面微放电效应发生的根本条件之一。在材料表面制备微纳结构能有效抑制SEY,从而降低器件在空间环境中发生微放电的风险。激光加工可操作性强、灵活度高,可用于构建材料表面微米结构。本文使用1064 nm红外激光器在铝合金镀银样品表面制备单元尺寸为百微米的圆孔阵列和沟槽阵列,使用磁控溅射在样品表面分别覆盖200 nm银和72 nm铁氧体。SEY测试结果表明,银表面δmax(SEY峰值)从1.932降至0.868,铁氧体表面δmax从2.672降至1.312。实验证明激光加工制备的微米结构能大幅降低材料表面SEY,从而有效降低材料表面发生微放电的风险。  相似文献   

7.
为了提高核探测、航空航天、国防和精密科学仪器等领域中传统电子倍增器的性能,使其在较低的工作电压和入射电子能量下实现高增益、低噪声、长寿命的目标,在材料制备、二次电子发射测试和电子倍增器性能优化等方面开展了大量研究工作。利用原子层沉积(atomic layer deposition,ALD)技术研制了具有较高二次电子产额(secondary electron yield,SEY)的新型薄膜材料,研究了元素掺杂和表面修饰改善材料二次电子发射特性的方法,详细测试了薄膜材料的二次电子发射特性参数。利用ALD技术将新型薄膜材料成功应用于微通道板(microchannel plate,MCP)和单通道电子倍增器(channeltron electron multiplier,CEM)中,测试结果如下:相同工作电压下,镀膜后MCP组件的增益、单电子分辨率、峰谷比分别改善了约166%、17%和260%;对于单个CEM,镀膜前工作电压为2700V时增益才能达到108,而镀膜后1600V下即可达到相同增益(工作电压降低了1100V),并且其它各项参数(分辨率≤26%,累计拾取电荷量≥15.62C)均得到改善。该研究成果在高增益、长寿命新型电子倍增器研制及其在荷电粒子与含能光子探测中的应用具有重要意义。  相似文献   

8.
基于机器学习和深度人工神经网络(artificial neural network,ANN)提出一种二次电子发射唯象模型。利用Vaughan模型生成先验数据集,用于训练生成描述二次电子发射一般规律的先验知识ANN模型,并在不同参数条件下验证了先验知识ANN模型的正确性。然后,分别利用银和铝合金材料的二次电子发射系数实验数据修正先验知识ANN模型,分别得到了描述两种材料的特异ANN模型。测试结果表明,特异ANN模型计算结果与实验结果相比的平均绝对误差较Vaughan模型和Furman模型降低了30%以上,与复合唯象模型精度相当或更高。在小样本条件下测试了二次电子发射ANN模型的正确性,验证了分步训练方式的有效性和二次电子发射ANN模型对于小样本集的适应性。提出的基于机器学习的二次电子发射唯象模型能够避免复杂的参数修正过程,能够基于先验知识提升模型对于小样本的适应性,能够实现二次电子发射系数的连续插值,适于在数值模拟软件中使用。  相似文献   

9.
基于等效电路模型的介质材料二次电子发射系数研究   总被引:3,自引:3,他引:0  
材料表面的二次电子发射过程是空间大功率微波射频器件微放电效应的触发与维持机制。微放电效应是限制空间大功率微波部件应用的关键问题之一。因此,对材料二次电子发射特性的研究与表征非常重要。为正确理解电子辐照下介质样品的充放电过程,文章提出一种基于等效电路模型的理论模型对二次电子发射特性进行表征。针对不同电导率样品进行仿真验证以证实该电路模型的有效性。仿真结果与理论分析结果相符。  相似文献   

10.
二次电子发射特性测量装置的研究与进展   总被引:2,自引:2,他引:0  
微放电效应出发引出对二次电子发射特性的研究,针对二次电子发射特性的测量,分析研究了当下通用的二次电子系数和能谱的测量方法。着重介绍了国内外具有代表性的重点科室其测量二次电子发射特性的装置,详细对比了不同装置二次电子特性测量的准确性和差异性,总结了各自的优势和不足。最后指出了目前二次电子测试平台装置急需解决的一些制约测试质量的问题和难点,以及在测量装置研究上进一步的发展方向及趋势。为更加深入地研究二次电子发射理论和数值模拟问题奠定坚实的实验基础。  相似文献   

11.
针对空间电子辐照对介质材料所产生的带电效应对在轨航天器的服役性能带来了巨大威胁,为深入理解和探究空间电子辐照带电效应的特性和规律,重点介绍了在电子辐照环境下,介质材料的表面电位特性、材料的总带电电荷量以及电子辐照介质内部的实时电荷分布以及动态演变特性,并进一步阐述了带电状态对二次电子发射的反馈动态影响研究。此外,概括了近年来国内外对电子辐照带电的理论数值模拟方法及发展情况。  相似文献   

12.
太阳电池阵等部件由于其表面介质的高二次电子发射及光电子发射特性,使得其在轨表面充电典型表现为反向电位梯度(inverted potential gradient, IPG)。为了评估航天器部组件在轨的表面充电风险,需要研究IPG的特点及在地面模拟IPG的方法。文章通过分析地球中高轨道与低轨道空间等离子体环境中表面充电的特点,提出了地面模拟IPG表面充电的方法,并给出典型试验结果。推荐中高轨道利用电子枪或紫外源、低轨道利用冷稠等离子体源模拟表面充电IPG;模拟过程中为了建立IPG,试样基底导电部位需要悬浮且有直流负偏压电源驱动;模拟IPG时需要针对试样尺度进行缩比补偿;文章给出的方法可用于一般太阳电池阵或其他在轨充电会产生IPG的试样开展地面模拟及静电放电防护性能评价试验。  相似文献   

13.
理想导体表面电磁散射的高阶微扰解   总被引:2,自引:1,他引:2  
针对经典微扰法(SPM)求解粗糙表面电磁散射特性存在的问题,提出了一种基于二维表面场的一阶和二阶展开近似高阶微扰算法。用该法计算了高阶表面场分量的全极化后向散射SPM解和二阶场分量对水平极化双站及后向散射系数的修正解。研究了不同粗糙度下掠入射时高阶SPM求解的双站散射系数,以及不同方位角下高阶场量的散射特性。通过对合成场的修正,解决了近掠入射条件下散射系数计算的误差。数值计算结果证明该算法有效。  相似文献   

14.
二次电子发射对稳态等离子体推进器加速通道鞘层的影响   总被引:3,自引:0,他引:3  
稳态等离子体推进器(Stationary Plasma Thruster,SPT)工作时产生的高密度等离子体遇到其加速通道陶瓷器壁时,在陶瓷器壁与等离子体之间形成鞘层。离子会在鞘层电场作用下到达SPT加速通道器壁表面进而复合,而等离子体中的电子由于具有高能可跃过鞘层电场轰击器壁表面,从而产生二次电子发射效应。从器壁表面发射出的二次电子由于受到鞘层电场的排斥,导致其向等离子体源区移动,进而影响等离子体鞘层的特性。建立了考虑二次电子发射效应的无碰撞等离子体鞘层的一维流体模型,研究了二次电子发射对SPT加速通道鞘层特性的影响。计算结果显示,随二次电子发射系数增加,鞘层电势、离子密度、电子密度和二次电子密度增加,而离子速度降低,鞘层中离子密度始终大于电子密度。鞘层中二次电子绝大多数集中在器壁附近,随二次电子穿越鞘层厚度的增加,二次电子密度快速下降。  相似文献   

15.
星载微波部件的微放电效应是影响航天器微波传输系统独特的瓶颈问题之一。以星载微波部件微放电阈值仿真中广泛使用的Furman模型为研究对象,以平行平板传输线为例,研究并获得了Furman模型中本征二次电子、弹性散射电子、非弹性散射电子3类电子的模型参量对微放电阈值的影响规律,并通过对总二次电子发射系数的影响合理解释了微放电阈值的变化规律,为星载微波部件微放电阈值的精确仿真提供了规律指导。  相似文献   

16.
基于镀银铝合金材料的微波部件在高真空及大功率工作时容易产生二次电子倍增效应,引起噪声电平抬高,输出功率下降,导致微波部件失效。有效抑制二次电子倍增效应,对于空间微波部件的正常运行极为重要。二硫化钼不仅具有与石墨烯类似的结构,而且其带隙可调,具有出色的电学、光学等性能。通过水热法制备了二硫化钼,并将其涂覆在镀银铝合金材料的表面,研究了复合材料的二次电子发射特性。结果表明,合成的二硫化钼具有花瓣状的纳米结构,并可以显著降低镀银铝合金表面的二次电子发射系数至0.63,原因是三维形态的纳米花瓣状二硫化钼可在微波部件表面构建无数个“微陷阱”,使得二次电子被捕获的几率增加,从而降低其逸出材料表面的概率。表面涂覆二硫化钼的镀银铝合金材料可望用于提高大功率微波部件的阈值功率。  相似文献   

17.
由二次电子发射引发的微放电效应是严重影响星载微波部件性能和安全的瓶颈问题之一。针对星载微波部件微放电的研究及应用需求,对国内外二次电子发射的研究进展进行了系统梳理,介绍了二次电子发射模型、仿真分析方法、测试装置及实验研究,以及在微波射频器件及航天器充放电方面的应用研究,总结了主要的研究结论。在此基础上提出了发展建议,以期对国内的二次电子发射及微放电研究的推进提供参考。  相似文献   

18.
采用风洞实验和数值模拟方法研究平板表面圆柱形粗糙单元引起的M=3超声速边界层转捩问题。实验采用纳米粒子示踪平面激光散射技术(NPLS)对流动结构进行测量。共考察了1mm、2mm和4mm三个不同的粗糙度条件。采用五阶精度加权紧致非线性格式(WCNS-E-5)对风洞实验进行数值模拟和对比。实验及计算表明:粗糙元对边界层干扰后诱导了尾迹流向涡的形成,流向涡通过抬升机制产生剪切层和流向速度条带等不稳定结构;实验流动图像显示,剪切层不稳定在边界层转捩过程中起重要作用;随着粗糙元高度增加,流动分离范围和转捩区域明显扩大,转捩位置有提前的趋势。  相似文献   

19.
空间金属材料的二次电子发射系数测量研究   总被引:3,自引:0,他引:3  
空间金属材料的二次电子发射系数是表征空间飞行器大功率微波部件微放电的重要参数,也是空间飞行器大功率微波部件的选材、分析与设计的重要依据。为了准确测量空间金属材料的二次电子发射系数,搭建了专门的测量平台。文章介绍了空间金属材料的二次电子发射系数测量原理、测量平台的结构组成,实验测量结果表明该测量平台能够准确的测量空间金属材料的二次电子发射系数。  相似文献   

20.
通过研究W-M函数模型本身的分维D和粗糙度Ra,得出结论:对于相同的粗糙度Ra,分维值越小,轮廓变化越平缓。由此认为:对工程表面的表征而言,分维是表示粗糙表面平缓程度的一个量。该量与Ra是没有直接关系的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号