首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 862 毫秒
1.
介绍了国际空间站哥伦布舱的系统级环境控制系统试验。该试验既没有使用大型真空设备也没有使用太阳模拟器或红外灯等外热流模拟设施,而是直接在总装大厅的大气环境下实施。试验工况包括发射、正常和故障运行等模式。试验有效验证了哥伦布舱集成全局热数学模型,以及主动热控系统和环境控制与生命保障系统的接口关系。  相似文献   

2.
气体复用技术回收利用了气闸舱出舱活动泄压的大部分气体,对空间站的长期经济运行具有重要意义。文章调研了"国际空间站"气体复用技术,包括美国联合气闸舱及日本实验舱气闸室。重点介绍联合气闸舱气体复用系统组成、硬件设计及性能,并阐述了泄压方式的冗余设计。初探了我国空间站气闸舱气体复用技术,经论证,我国空间站气闸舱气体复用技术拟采用转移抽送的技术原理,与"国际空间站"气闸舱气体复用技术方案有不同特点。探讨了气体复用技术的地面试验方法,对试验条件的影响性进行简要分析总结。文章的技术方案简便可行,可应用于我国空间站的建设。  相似文献   

3.
国际空间站是目前在轨运行的最大空间平台,具有系统体积庞大、构型复杂、接口众多、载荷种类不确定等特点。因此,系统级力学试验、热试验以及组件环境试验对空间站的设计和工艺验证非常重要。文章调研了国际空间站各舱段的系统级力学试验、热试验以及组件环境试验情况,以期为我国空间站的地面试验系统设计、研制提供参考。  相似文献   

4.
文章介绍了国际空间站组件鉴定环境试验与验收环境试验的主要项目及内容,并且与GJB 1027A—2005组件鉴定环境试验与验收环境试验进行了比较与分析。  相似文献   

5.
庞之浩 《航天》2010,(9):36-39
2010年2月8日,美国“奋进”号航天飞机上天,为国际空间站送去了第三个、也是最后的节点舱——“宁静”号节点3号舱,以及欧洲“嘹望塔”号观测舱。这标志着国际空间站非俄罗斯舱段的建造已完成,国际空间站的建造工程已完成了90%。此后,航天飞机还将执行4次国际空间站任务。届时,耗时25年、花费数百亿美元的国际空间站将基本建成,航天飞机也将光荣退役。  相似文献   

6.
《中国航天》2000,(3):37
国际空间站的第一个商业性舱段——企业号可能在 2 0 0 3年发射国际空间站上将建“商品房”  美国太空居室公司和俄罗斯能源科研生产航天中心准备建造一个舱段 ,并将其安装到国际空间站上。该舱称为企业号 ,除用于商业微重力试验外 ,还将设一个演播室 ,用于电视和因特网广播。其中后一项业务可能将与一家因特网空间新闻与信息服务商联手。企业号舱将是国际空间站上的第一个私营商业舱段 ,太空居室公司总裁称之为“轨道上的第一间商品房”。企业号舱需要 1亿美元的投资。它将由质子号运载火箭发射 ,并与国际空间站上的俄罗斯部分相连 ,预计…  相似文献   

7.
空间站舱内噪声仿真、验证与声源布局优化   总被引:1,自引:1,他引:0  
文章开展了空间站舱内噪声仿真研究,给出了声学参数设置方法,使用FE/FEM耦合方法和SEA方法完成了空间站模拟舱建模仿真分析,设计了模拟舱噪声验证试验,提出了基于声功率等效的声源模拟技术,证明了两种方法结合可在全频段较好地预示空间站舱内噪声环境,仿真总声压级与测试结果偏差在2 d B以内。最后对空间站的声源布局进行了优化分析,结果表明集中布局更有利于降低噪声水平。  相似文献   

8.
庞之浩 《航天员》2011,(5):59-62
国际空间站的建造是由美国牵头的,其投入占国际空间站总成本的70%,所以称得上该工程的“龙头老大”。美国为国际空间站提供了实验舱、节点舱、气闸舱等各1个,以及7段桁架结构、4对太阳能电池阵,还用航天飞机完成了许多舱段的运输任务和航天员出舱组装空间站部件的任务。  相似文献   

9.
为增强空间站对舱外载荷的支持能力,提升舱内外货物的进出效率,减少航天员出舱次数,降低航天员出舱风险,空间站梦天实验舱设计了货物自动进出舱功能。本文从货物进出舱功能方案出发,介绍了包括货物转运功能、外舱门功能、泄压、复压、气体复用功能在内的关键子功能的地面试验验证及在轨试验验证工作。地面及在轨试验验证结果对比表明:货物进出舱方案设计合理,地面验证结果和在轨数据一致性好,产品性能稳定,有效地提高了空间站货物进出舱效率。  相似文献   

10.
2007年是国际空间站加紧建设的重要之年,共有3架航天飞机、3艘货运飞船和2艘联盟飞船对接空间站,全年累计进行舱外活动高达22次,“和谐”号连接舱、新结构组件和太阳能电池板纷纷就位,空间站总体积显著增大。本文主要回顾了今年舱外活动的任务执行情况和出现的问题及故障,以供参考。  相似文献   

11.
“伽利略”卫星在轨任务控制系统高级规范综述   总被引:1,自引:0,他引:1  
肖鹏 《航天器工程》2012,21(1):97-101
重点描述了"伽利略"卫星在轨任务控制系统高级规范的相关内容,其中包括系统规范和子系统规范,如系统监测和控制子系统、遥测监测子系统、遥控指令子系统和数据归档子系统等;就如何借鉴"伽利略"卫星在轨任务控制系统高级规范,提出了一些开展我国星座卫星在轨任务控制系统设计的策略和方法,如设计方法、实现途径、自动化和安全策略等。  相似文献   

12.
国际空间站舱内空气温湿度控制技术综述   总被引:1,自引:0,他引:1  
与非载人航天器不同的是,载人航天器有环控生保系统,而舱内空气温湿度控制又是环控生保系统的一项重要内容。文章跟踪和介绍了国际空间站各舱内的温湿度控制方案,包括设计指标、硬件组成及所采用的技术;重点评述了国际空间站舱内温湿度控制系统的关键设备——冷凝干燥器组件及其降温除湿原理;最后结合NASA近年来研究的多孔渗水冷凝干燥器,指出未来冷凝干燥器的发展方向。  相似文献   

13.
董文平  邓一兵  傅岚  陈善广 《宇航学报》2004,25(4):370-374,381
研究了载人飞船环控生保系统主要故障模型及飞控对策,根据系统工作原理建立了影响飞行安全的主要故障模型,如舱体泄漏、气源消耗过量和CO2净化失效等,应用该类模型对飞行数据进行实时处理,判断或预测故障,同时给出飞控对策。该方法已成功应用于首次载人飞行。  相似文献   

14.
F. L. Foran 《Acta Astronautica》1999,44(7-12):391-398
The system architecture of the Mobile Service System (MSS) forms an integral part of the architecture of the International Space Station (ISS) in which elements interact through data components controlled by their respective element software. Tne element developers produce software components which, subsequent to being validated on their respective elements, are integrated and verified in test environments which are representative of the integrated MSS/ISS system. This is the classical method for integration and verification. If program software requirements are, for various reasons, slow to finalize, the software development process starts later than anticipated, and following the classical development/verification processes, could put the scheduled software deliveries at risk. A new approach to development and verification is needed which must encompass the entire software program from component unit software to fully integrated system software. This paper describes the approach which was taken to perform system hardware/software integration and verification with software components which were essentially incomplete, but were developed in a phased fashion, having mutually compatible functionality. The paper describes the MSS and ISS system architecture, the various software components and an overview of the original integration and verification plan. The paper will then describe the new integration approach which was developed, and discuss the evolution of the various software components in terms of functionality and their phased integration into a system. The paper will conclude by providing a summary of the results of the integration and verification activities, and demonstrate how delivery schedules for the integrated system software were met.  相似文献   

15.
In order to verify that the International Space Station (ISS) payload facility racks do not disturb the microgravity environment of neighboring facility racks and that the facility science operations are not compromised, a testing and analytical verification process must be followed. Currently no facility racks have taken this process from start to finish. The authors are participants in implementing this process for the NASA Glenn Research Center (GRC) Fluids and Combustion Facility (FCF). To address the testing part of the verification process, the Microgravity Emissions Laboratory (MEL) was developed at GRC. The MEL is a 6 degree of freedom inertial measurement system capable of characterizing inertial response forces (emissions) of components, sub-rack payloads, or rack-level payloads down to 10(-7) g's. The inertial force output data, generated from the steady state or transient operations of the test articles, are utilized in analytical simulations to predict the on-orbit vibratory environment at specific science or rack interface locations. Once the facility payload rack and disturbers are properly modeled an assessment can be made as to whether required microgravity levels are achieved. The modeling is utilized to develop microgravity predictions which lead to the development of microgravity sensitive ISS experiment operations once on-orbit. The on-orbit measurements will be verified by use of the NASA GRC Space Acceleration Measurement System (SAMS). The major topics to be addressed in this paper are: (1) Microgravity Requirements, (2) Microgravity Disturbers, (3) MEL Testing, (4) Disturbance Control, (5) Microgravity Control Process, and (6) On-Orbit Predictions and Verification.  相似文献   

16.
微小卫星热控系统的研究现状及发展趋势   总被引:2,自引:1,他引:1  
文章针对微小航天器研究现状和发展需求给热控系统设计带来的难点和挑战,从传热学和控制学两个角度,对近年来微小卫星热控领域出现的先进的热量收集、传输和排放装置展开论述;追踪了国内外学者提出的热控发展新的理论和方案。总之,开展各种智能、灵巧的航天器热控部件研究及针对高性能传热装置的控制策略研究是由微小卫星的结构布局和任务特点所决定的必然要求和发展趋势。  相似文献   

17.
组合式INS/GPS系统可以满足各种导航要求的应用,包括飞机、靶机和导弹。本报告介绍了几个实例来反映国外研制、试验和开发组合式INS/GPS系统的近况。  相似文献   

18.
19.
The Active Rack Isolation System [ARIS] International Space Station [ISS] Characterization Experiment, or ARIS-ICE for short, is a long duration microgravity characterization experiment aboard the ISS. The objective of the experiment is to fully characterize active microgravity performance of the first ARIS rack deployed on the ISS. Efficient ground and on-orbit command and data handling [C&DH] segments are the crux in achieving the challenging objectives of the mission. The objective of the paper is to provide an overview of the C&DH architectures developed for ARIS-ICE, with the view that these architectures may serve as a model for future ISS microgravity payloads. Both ground and on-orbit segments, and their interaction with corresponding ISS C&DH systems are presented. The heart of the on-orbit segment is the ARIS-ICE Payload On-orbit Processor, ARIS-ICE POP for short. The POP manages communication with the ISS C&DH system and other ISS subsystems and payloads, enables automation of test/data collection sequences, and provides a wide range of utilities such as efficient file downlinks/uplinks, data post-processing, data compression and data storage. The hardware and software architecture of the POP is presented and it is shown that the built-in functionality helps to dramatically streamline the efficiency of on-orbit operations. The ground segment has at its heart special ARIS-ICE Ground Support Equipment [GSE] software developed for the experiment. The software enables efficient command and file uplinks, and reconstruction and display of science telemetry packets. The GSE software architecture is discussed along with its interactions with ISS ground C&DH elements. A test sequence example is used to demonstrate the interplay between the ground and on-orbit segments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号