首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Thin-walled tube numerical control (NC) bending is a tri-nonlinear physical process with multi-defect and multi-die constraints. The clearance on each contact interface is the major factor to indicate the contact conditions. A three-dimensional-finite element (3D-FE) model is established to consider the realistic dynamic boundary conditions of multiple dies under ABAQUS/Explicit platform. Combined with experiment, numerical study on bending behavior and bendability under different clearance between tube and various dies is conducted in terms of wrinkling, wall thinning and cross section deformation. The results show that (1)with smaller clearance of tube-wiper die and tube-mandrel, the wrinkling can be restrained while the wall thinning It and cross-section deformation Id increase; while excessive small clearance blocks tube materials to flow past tangent point and causes piles up, the onset of wrinkling enhances It and Id. (2)Both It and Id decrease with smaller clearance of tube-pressure die; the wrinkling possibility rises with larger clearance on this interface if the mandrel’s freedom along Y-axis is opened; smaller clearance of tube-bend die prevents wrinkling while increases It, and the clearance on this interface has little effect on Id. (3)A modified Yoshida buckling test (YBT) is used to address the wrinkling mechanisms under normal constraints in tube bending: the smaller clearance may restrain wrinkling efficiently; the smaller wall thickness, the less critical clearance needed; the critical clearance for tube bending 38 mm×1 mm×57 mm (tube outer diameter×wall thickness×centerline bending radius) equals about 20% of initial wall thickness.  相似文献   

2.
《中国航空学报》2016,(6):1815-1829
Plastic wrinkling predictions and shear enforced wrinkling characteristics of Ti-alloy thin-walled tubes under combination die constraints have become key problems urgently in need of solutions in order to improve forming quality in their shear bending processes under differential temperature fields. To address this, a wrinkling wave function was developed by considering their shear bend deformation characteristics. Based on this wave function and the thin shell theory, an energy prediction model for this type of wrinkling was established. This model enables considera-tion of the effects of shear deformation zone ranges, material parameters, loading modes, and fric-tion coefficients between tube and dies on the minimum wrinkling energy. Tube wrinkling sensitive zones (WSZs) can be revealed by combining this wrinkling prediction model with a thermal-mechanical coupled finite element model for simulating these bending processes. The reliability of this wrinkling prediction model was verified, and an investigation into the tube wrinkling char-acteristics was carried out based on the experimental conditions. This found that the WSZs are located on either a single side or both sides of the maximum shear stress zone. When the friction coefficients between the tube and the various dies coincide, the WSZs are located on both sides. The larger the value of the tube inner corner radius and/or the smaller the value of the outer corner radius, the smaller the wrinkling probability. With an increase in the value of the moving die dis-placement, the wrinkling probability increases at first, and then decreases.  相似文献   

3.
弯管成形理论和技术研究进展与发展趋势(英文)   总被引:13,自引:4,他引:9  
As one kind of key components with enormous quantities and diversities,the bent tube parts satisfy the increasing needs for lightweight and high-strength product from both materials and structure aspec...  相似文献   

4.
Aluminum alloy (Al-alloy) thin-walled (D/t > 20, diameter D, wall thickness t) bent tubes have attracted increasing applications in many industries with mass quantities and diverse specifications due to satisfying high strength to weigh ratio requirements of product manufacturing. However, due to nonlinear nature of bending with coupling effects of multiple factors, the similarity theory seems not applicable and there occurs a challenge for efficient and reliable evaluation of the bending formability of thin-walled tube with various bending specifications. Considering the unequal deformation and three major instabilities, the bending formability of thin-walled Al-alloy tube in changing tube sizes such as D and t are clarified via both the analytical and FE modeling/ simulations. The experiments of rotary draw bending are conducted to validate the theoretical models and further confirm ’size effect’ related bending formability. The major results show that (1) The anti-wrinkling capability of tube decreases with the larger D and smaller t, and the effect significance of t is larger than that of D even under rigid supports; (2) The wall thinning increases with the larger D and smaller t, and this tendency becomes much more obvious under rigid supports; (3) The cross-section deformation increases with the larger D and smaller t according to the analytical model obtained intrinsic relationship, while this tendency becomes opposite due to the nonlinear role of mandrel die; (4) The size factor D/t can be used as a nondimensional index to evaluate both the bending formability regarding the wall thinning and cross-section deformation.  相似文献   

5.
闫晶  吴为 《航空学报》2016,37(9):2884-2894
不同温度下的薄壁钛管剪应力本构参数识别,是研究薄壁钛管差温剪切弯曲过程管材塑性变形行为迫切需要解决的关键问题。提出了一种管材剪切测试的方法。将不同温度下薄壁钛管等温剪切测试、剪切测试过程模拟有限元模型、以及基于距离函数的响应面模型相结合,提出了薄壁钛管不同温度下剪应力本构参数逆向识别方法。采用该方法,识别了TA2薄壁钛管剪应力本构参数。同时建立了TA2薄壁钛管差温剪切弯曲过程模拟3维弹塑性热力耦合有限元模型。分别采用剪应力本构参数和单拉应力本构参数模拟弯管实验过程,评估了有限元模型的可靠性。结果表明:对于剪应力本构参数,温度越高,管材的K值和n值将减小,m值呈现波动的趋势。与单拉应力本构参数相比,剪应力本构参数对温度的变化更敏感,且剪应力本构参数值较小。与单拉应力本构参数相比,使用剪应力本构参数的有限元模型精度较高,模拟精度最大提高了60%。  相似文献   

6.
Inner flange and side wrinkling often occur in rotary-draw bending process of rectangular aluminum alloy wave-guide tubes, and the distribution and magnitude of wrinkling is related to geometrical parameters of the tubes. In order to study the effects of geometrical parameters on wrinkling of rectangular wave-guide tubes, a 3D-FE model for rotary-draw bending processes of thin-walled rectangular aluminum alloy wave-guide tubes was built based on the platform of ABA-QUS/Explicit, and its reliability was validated by experiments. Simulation and analysis of the influence laws of geometrical parameters on the wave heights of inner flange and side wrinkling were then carried out. The results show that inner flange wrinkling is the main wrinkling way to rectan- gular wave-guide tubes in rotary-draw bending processes, but side wrinkling cannot be neglected because side wrinkling is 2/3 of inner flange wrinkling when b and h are smaller. Inner flange and side wrinkling increase with increasing b and h; the influence of b on side wrinkling is larger than that of h, while both b and h affect inner flange wrinkling greatly. Inner flange and side wrinkling decrease with increasing R/h; the influence of h on inner flange and side wrinkling is larger than that of R.  相似文献   

7.
To improve the forming quality and forming limit of the numerical control (NC) bending of high-pressure titanium alloy tubes, in this study, using three-dimensional (3D) finite element method, deformation behavior of medium-strength TA18 high-pressure tubes during NC bending with different bending radii is investigated. The results show that the cross-sectional deformation and the wall thickness variation during NC bending of TA18 tubes using a small bending radius (less than 2 times of tube outside diameter) are clearly different from that using a normal bending radius (between 2 and 4 times of tube outside diameter). For bending with a normal bending radius, with or without a mandrel, the distribution of the flattening in the bending area resembles a platform and an asymmetric parabola, respectively. For bending with a small bending radius, with or without a mandrel, the flattening both distributes like a parabola, but the former has a stable peak which deflects toward the initial bending section, and the latter has a more pronounced peak with a bending angle and deflects slightly toward the bending section. The wall thickness variations with a normal bending radius, with and without a mandrel, both resemble a platform when the bending angle exceeds a certain angle. For the bending with a small radius, the distribution of the wall thickness variation without a mandrel follows an approximate parabola which increases in value as the bending angle increases. If a mandrel is used, the thickening ratio increases from the initial bending section to the bending section.  相似文献   

8.
《中国航空学报》2020,33(2):721-729
3D free bending process, an advanced metal forming technology, has attracted much attention due to its unique geometrical flexibility and efficiency. Filling tubes with materials may effectively reduce the distortion in the cross-section area and restrain wrinkling and collapse of tube wall. In the present study, the impacts of filling different materials on the copper tubes during 3D free bending process were investigated. We have found that copper tubes filled with low melting point alloys could induce the most uniform stress distribution, which result in better formability and moderate thickness changing rates when compared to SS304 steel balls and PU rubbers. The lowest ellipticity reached to 1.467%.  相似文献   

9.
Advances and trends in plastic forming technologies for welded tubes   总被引:2,自引:2,他引:0  
《中国航空学报》2016,(2):305-315
With the implementation of environmental protection, sustainable development and conservation-oriented policies, components and parts of thin-walled welded tubes have gained increasing application in the aircraft and automotive industries because of their advantages: easily achieving forming and manufacturing process at low cost and in a short time. The current research on welded tube plastic forming is mainly concentrated on tube internal high-pressure forming, tube bending forming, and tube spinning forming. The focuses are on the material properties and characterization of welded tubes, finite element modeling for welded tube forming, and inhomogeneous deformation behavior and the mechanism and rules of deformation coordination in welded tube plastic forming. This paper summarizes the research progress in welded tube plastic forming from these aspects. Finally, with a focus on the urgent demand of the aviation, aerospace and automotive industries for high-strength and light-weight tubes, this paper discusses the development trends and challenges in the theory and technology of welded tube plastic forming in the future. Among them,laser tailor-welded technology will find application in the manufacture of high-strength steel tubes.Tube-end forming technology, such as tube flaring and flanging technology, will expand its application in welded tubes. Therefore, future studies will focus on the FE modeling regarding how to consider effects of welding on residual stresses, welding distortions and microstructure, the inhomogeneous deformation and coordination mechanism of the plastic forming process of tailor-welded tubes, and some end-forming processes of welded tubes, and more comprehensive research on the forming mechanism and limit of welded tubes.  相似文献   

10.
薄壁管数控弯曲过程中失稳起皱的主要影响因素   总被引:10,自引:0,他引:10  
林艳  杨合  李恒  詹梅 《航空学报》2003,24(5):456-461
 针对薄壁管数控弯曲精确成形过程在多因素交互作用下可能发生失稳起皱这一复杂物理问题, 基于起皱能量准则和有限元方法相结合, 提出了预测该过程起皱发生的能量( 数值) 方法, 研究了影响薄壁管数控弯曲成形过程起皱发生的主要因素及影响机制。结果表明, 弯曲半径、相对管径、芯棒伸长量和摩擦因素是影响薄壁管数控弯曲精确成形过程起皱发生的主要因素, 而材料的应力强度系数和加工速度等对起皱发生影响较小。研究结果为薄壁管数控弯曲精确成形过程参数的确定和优化创造了条件。  相似文献   

11.
刘春梅  刘郁丽  任家海  杨合 《航空学报》2015,36(4):1320-1329
 双脊矩形管的绕弯成形受内外侧模具的共同约束,不同模具约束下管坯的受力不同,使得其截面变形情况也不相同,而截面变形严重地影响弯管件的成形质量和使用性能。因此,基于ABAQUS有限元平台建立了双脊矩形管E弯成形三维有限元模型,并通过实验验证了模型的可靠性。采用所建模型,研究了内外侧模具约束条件对双脊矩形管E弯截面变形的影响规律,发现当只有内腹板脊槽受约束时,内腹板脊槽的内缩变形可得到较好的控制,而其他部位的变形则有增大的趋势;当只有外腹板脊槽受约束时,内腹板脊槽宽度变形基本不发生变化,而其他部位的变形则有减小的趋势;当内外腹板脊槽均受约束时,可较好地控制双脊矩形管E弯过程中的截面变形。芯头个数对整管截面高度、宽度、外腹板脊槽宽度与两脊槽底部的间距的变形影响较大,但对内腹板脊槽宽度的变形影响不显著。  相似文献   

12.
13.
空间弯管的回弹预测   总被引:2,自引:0,他引:2  
张深  吴建军 《航空学报》2011,32(5):953-960
管材弯曲卸载后将不可避免地产生一定回弹,严重影响弯管生产的精度与效率,因此回弹成为管材弯曲的重点研究对象.对空间非平面弯管回弹进行研究,将空间回弹问题转化为两个相互垂直平面上的同弹问题,通过纯弯曲回弹实验,建立弯管平面弯曲回弹前后半径之间的函数关系式,然后将两个平面上的回弹合并,对离散化的回弹弯管进行空间拼接,进而完成...  相似文献   

14.
《中国航空学报》2020,33(12):3479-3494
Because of the complex constraint effects among layers in multi-layered metallic bellows hydroforming, the stress concentration and defects such as wrinkling and fracture may easily occur. It is a key to reveal the deformation behaviors in order to obtain a sound product. Based on the ABAQUS platform, a 3D-FE model of the four-layered U-shaped metallic bellow hydroforming process is established and validated by experiment. The stress and strain distributions, wall thickness variations and bellow profiles of each layer in the whole process, including bulging, folding and springback stages, are studied. Then deformation behaviors of bellows under different forming conditions are discussed. It is found that the wall thinning degrees of different layer vary after hydroforming, and is the largest for the inner layer and smallest for the outer layer. At folding stage, the wall thinning degree of the crown point increases lineally, and the difference among layers increases as the process going. The displacements of the crown point decrease from the inner layer to the outer layer. After springback, the U-shaped cross section changes to a tongue shape, the change of convolution pitch is much larger than the change of convolution height, and the springback values of the inner layer are smaller than the outer layer. An increase in the internal pressure and die spacing cause the maximum wall thinning degree and springback increase. With changing of process parameters, bellows with deep convolution are easily encountered wall thinning during hydroforming and convolution distortion after springback. This research is helpful for precision forming of multi-layered bellows.  相似文献   

15.
The precision forming of thin-walled components has been urgently needed in aviation and aerospace field. However, the wrinkling induced by the compressive instability is one of the major defects in thin-walled part forming. The initiation and growth of the wrinkles are interac-tively affected by many factors such as stress states, mechanical properties of the material, geometry of the workpiece and boundary conditions. Especially when the forming process involves compli-cated boundary conditions such as multi-dies constrains, the perturbation of clearances between workpiece and dies and the contact conditions changing in time and space, etc., the predication of the wrinkling is further complicated. In this paper, the current prediction methods were summa-rized including the static equilibrium method, the energy method, the initial imperfection method, the eigenvalue buckling analysis method, the static-implicit finite element method and the dynamic-explicit finite element method. Then, a systematical comparison and summary of these methods in terms of their advantages and limitations are presented. By using a combination of explicit FE method, initial imperfection and energy conservation, a hybrid method is recommended to predict plastic wrinkling in thin-walled part forming. Finally, considering the urgent requirements of com-plex thin-walled structures’ part in aviation and aerospace field, the trends and challenges in wrin-kling prediction under complicated boundary conditions are presented.  相似文献   

16.
《中国航空学报》2021,34(11):267-276
Three dimensional (3D) tubes, which possess the characteristics of space saving, lightweight and high strength, are widely used in many high-end industries such as aviation, aerospace, automobile and shipbuilding. However, when manufacturing a 3D tube in flexible bending process, springback is a big obstacle for improving the forming quality. In this paper, a new comprehensive strategy for springback control of 3D tubes is proposed. The strategy can be described as follows: (1) define the desired shape and manufacture shape; (2) optimize the manufacture shape using two tooling design methods (e.g. DA (displacement adjustment) method and B&T (bending and twisting) method presented in this paper); (3) make a discretization of the manufacture shape to acquire the optimized forming parameters. Additionally, experiment is implemented to validate the effectiveness of the new strategy. Results show that forming parameters acquired by the new strategy are partially effective. The new strategy also demonstrates that, during 3D tubes forming, the deviation caused by over-bent elements can be counteracted by the deficient-bent elements. This principle is helpful to reduce the difficulty of parameter determination in future.  相似文献   

17.
李斌  董楠楠  冯志壮  牛文超 《航空学报》2016,37(10):3044-3053
在经典工程梁理论的基础上,结合张力薄膜的应力状态分析,提出充气机翼褶皱失稳的判据。计入表面薄膜褶皱引起的刚度退化效应,将机翼等效处理为一个变截面刚度的梁,建立了充气悬臂机翼的等效梁模型,并采用微分求积法进行充气机翼弯曲变形分析。计算结果与充气机翼的静力弯曲试验结果相吻合,验证了充气机翼弯曲变形分析方法的有效性。应用片条理论引入气动力模型,并与所建立的等效梁模型相耦合,建立充气机翼的静气动弹性耦合模型,并用迭代算法进行求解。考虑起皱和失稳两种判据,并计算获取了试验机翼的起皱动压和皱褶失稳动压形式,计算结果与风洞试验结果一致。根据所建立的充气机翼静气动弹性分析方法,可以预测充气机翼表面褶皱区的扩展和弯曲变形,进而绘制充气机翼的静气弹许用包线,为充气机翼的设计提供必要的安全边界参考依据。  相似文献   

18.
王安恒  薛红前  杨艳丽  魏耀光 《航空学报》2019,40(12):423127-423127
以提高大截面Z型材四轴滚弯成形精度为目的,通过综合考虑材料属性、几何特征和成形半径等因素对回弹的影响,建立了引入中性层偏移的大截面Z型材弯曲回弹解析模型,研究了7075-O和7475-O铝合金Z型材在不同滚弯成形半径下的回弹规律,并进行滚弯成形实验验证。结果表明,与忽略中性层偏移影响的型材回弹预测经验模型相比,基于中性层偏移的回弹预测模型能够准确预测大截面Z型材的回弹量,在相同的曲率半径下,预测回弹变形的最大相对误差从11.681%减小到3.347%。  相似文献   

19.
《中国航空学报》2021,34(4):253-264
In the 3D free bending forming system, the bending die can be designed either in a sliding type or rolling friction type. Bending die-based sliding friction type is often called normal bending dies; however, the bending dies-based rolling friction type includes bending die-based roller type and ball type in structure. In the current study, the impact of three bending dies on the forming force, and the bent tube quality was investigated. The obtained results showed that the tangential stresses and strains of the tubes formed by the bending die-based roller type were the smallest among the three bending dies. Besides, the spherical bearing force PU was reduced drastically after using the roller type and ball type compared to the sliding friction type. Moreover, the uniformity of the wall thickness distribution of the tubes formed by the roller type and ball type was better than those obtained from the sliding friction type. In addition, the cross-section distortion rate was reduced by 2.8% using the roller type, and 1.8% using ball-type compared to the sliding friction type.  相似文献   

20.
The isothermal local loading forming technology provides a feasible way to form Ti-alloy large-scale rib-web components in aerospace and aviation fields.However,the local load ing process forming limit is restricted by forming defects in the transitional region.In this work,the feasibility of controlling forming defects and improving the process forming limit by adjusting die parameters is explored through finite element (FE) simulation.It is found that the common cavum and folding defects in the transitional region are significantly influenced by the fillet radii of left rib and middle rib,respectively.The cavum and folding defects can be effectively controlled by increas ing the fillet radii of left rib and middle rib,respectively.The process forming limits considering forming defects in the transitional region are determined by the stepwise searching method under various die parameters.Moreover,the relationship between the process forming limit and die parameters is developed through the response surface methodology (RSM).The developed RSM models suggest that increasing the fillet radii of left and middle ribs is effective to improve the pro cess forming limit during local loading forming of rib-web components.The results will provide technical basis for the design of die parameters and the reduction amount,which is of great impor tance to control forming defects and improve the process forming limit in local loading forming of Ti-alloy large-scale rib-web components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号