首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 422 毫秒
1.
We discuss recent results of radius to frequency mapping of pulsars. This method shows that for 43 pulsars the radio emission originates near the polar cap for millisecond pulsars and a few hundred km away for longer period pulsars. If the magnetospheres of these object contain dipolar magnetic fields, the corresponding magnetic field strength in the emission region is about 107 gauss, for all pulsars in the sample. We investigate possible physical reasons for the location of the radio emission.  相似文献   

2.
The structure of both the interior and exterior pulsar magnetosphere depends upon the strength of its plasma source near the surface of the star. We review magnetospheric models in the light of a vacuum pair-production source model proposed by Sturrock, and Ruderman and Sutherland. This model predicts the existence of a cutoff, determined by the neutron star's spin rate and magnetic field strength, beyond which coherent radio emission is no longer possible. The observed distribution of pulsar spin periods and period derivatives, and the distribution of pulsars with missing radio pulses, is quantitatively consistent with the pair production threshold, when its variation of neutron star radius and moment of inertia with mass is taken into account. All neutron stars observed as pulsars can have relativistic magnetohydrodynamic wind exterior magnetospheres. The properties of the wind can be directly related to those of the pair production source. Radio pulsars cannot have relativistic plasma wave exterior magnetospheres. On the other hand, most erstwhile pulsars in the galaxy are probably halo objects that emit weak fluxes of energetic photons that can have relativistic wave exterior magnetospheres. Extinct pulsars have not been yet observed.Proceedings of the NASA/JPL Workshop on the Physics of Planetary and Astrophysical Magnetospheres.Institute of Geophysics and Planetary Physics, UCLA.Center for Plasma Physics and Fusion Engineering, UCLA.On leave from: Centre de Physique Theorique, Ecole Polytechnique, Palaiseau, France.  相似文献   

3.
We discuss the degree to which radio propagation measurements diagnose conditions in the ionized gas of the interstellar medium (ISM). The “signal generators” of the radio waves of interest are extragalactic radio sources (quasars and radio galaxies), as well as Galactic sources, primarily pulsars. The polarized synchrotron radiation of the Galactic non-thermal radiation also serves to probe the ISM, including space between the emitting regions and the solar system. Radio propagation measurements provide unique information on turbulence in the ISM as well as the mean plasma properties such as density and magnetic field strength. Radio propagation observations can provide input to the major contemporary questions on the nature of ISM turbulence, such as its dissipation mechanisms and the processes responsible for generating the turbulence on large spatial scales. Measurements of the large scale Galactic magnetic field via Faraday rotation provide unique observational input to theories of the generation of the Galactic field.  相似文献   

4.
Our knowledge of radio pulsars is reviewed with particular emphasis on properties of radio emission that are relevant to an understanding of the emission mechanism. We discuss the tendency for emission to occur in two orthogonal modes of polarization, observational limits on the location of the emission region, and the issue of whether coherence is established by a broadband or a narrowband mechanism.Proceedings of the NASA/JPL Workshop on the Physics of Planetary and Astrophysical Magnetospheres.  相似文献   

5.
We see neutron stars principally by their radio and X-ray emission. Their appearance in these different bands depends on whether the emission comes from the surface or its magnetosphere. New phenomena continue to be found from neutron stars, which makes it an exciting and topical research area. This volume is a collection of the papers from a NATO Advanced Study Institute held in Italy in October 1996. Many, and for me the most interesting ones, are substantial reviews on topics such as Pulsar magnetic fields and glitches (M. Ruderman), Radio pulsar population properties (D. Lorimer), Gamma-ray emission from CGRO pulsars (G. Kanbach), Neutron stars and black holes in X-ray binaries (J. van Paradijs), Kilohertz quasi-periodic oscillations in low-mass X-ray binaries (M. van der Klis), Thermonuclear burning on rapidly accreting neutron stars (L. Bildsten), On the X-ray emission properties of rotation powered pulsars (W. Becker and J. Truemper). It will serve as a useful reference and source book for students in high energy astrophysics and related fields. The high price may deter its purchase by individuals, but it will be a good volume for a library needing recent coverage on neutron stars. It does not of course include the most recent developments on anomalous X-ray pulsars or magnetars. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

6.
Until the ULYSSES spacecraft reached the polar regions of the solar wind, the only high-latitude measurements available were from indirect techniques. The most productive observations in regions of the solar wind between 5R and 200R have been the family of radio scattering techniques loosely referred to as Interplanetary Scintillation (IPS) (Coles, 1978). Useful observations can be obtained using a variety of radio sources, for example spacecraft beacons, planetary radar echoes and compact cosmic sources (quasars, active galactic nuclei, pulsars, galactic masers, etc.). However for measurement of the high-latitude solar wind cosmic sources provide the widest coverage and this review will be confined to such observations. IPS observations played a very important role in establishing that polar coronal holes (first observed in soft x-ray emission) were sources of fast solar wind streams which occasionally extend down to the equatorial region and are observed by spacecraft. Here I will review the IPS technique and show the variation of both the velocity and the turbulence level with latitude over the last solar cycle. I will also outline recent work and discuss comparisons that we hope to make between IPS and ULYSSES observations.  相似文献   

7.
25 years after their discovery, pulsars still pose fundamental problems, in particular when the whole range of their periodsP is considered: 1.56 ms P0.09 s. This communication reviews my understanding of the pulsar magnetosphere, windzone, and (coherent) radio emission. New are details of the preferred magnetic structure, wind generation, and amplification of the emitted (pseudo) curvature radiation, the inferred brightness of which exceeds that of all other terrestrial and astrophysical sources by many orders of magnitude.  相似文献   

8.
Pulsars are natural cosmic clocks. On long timescales they rival the precision of terrestrial atomic clocks. Using a technique called pulsar timing, the exact measurement of pulse arrival times allows a number of applications, ranging from testing theories of gravity to detecting gravitational waves. Also an external reference system suitable for autonomous space navigation can be defined by pulsars, using them as natural navigation beacons, not unlike the use of GPS satellites for navigation on Earth. By comparing pulse arrival times measured on-board a spacecraft with predicted pulse arrivals at a reference location (e.g. the solar system barycenter), the spacecraft position can be determined autonomously and with high accuracy everywhere in the solar system and beyond. We describe the unique properties of pulsars that suggest that such a navigation system will certainly have its application in future astronautics. We also describe the on-going experiments to use the clock-like nature of pulsars to “construct” a galactic-sized gravitational wave detector for low-frequency (\(f_{GW}\sim 10^{-9} \text{--} 10^{-7}\) Hz) gravitational waves. We present the current status and provide an outlook for the future.  相似文献   

9.
This paper surveys some of the astrophysical environments in which the effects of Lense-Thirring precession and, more generally, frame dragging are expected to be important. We concentrate on phenomena that can probe in situ the very strong gravitational field and single out Lense-Thirring precession in the close vicinity of accreting neutron stars and black holes: these are the fast quasi periodic oscillations in the X-ray flux of accreting compact objects. We emphasise that the expected magnitude of Lense-Thirring/frame dragging effects in the regions where these signals originate are large and thus their detection does not pose a challenge; rather it is the interpretation of these phenomena that needs to be corroborated through deeper studies. Relativistic precession in the spin axis of radio pulsars hosted in binary systems hosting another neutron star has also been measured. The remarkable properties of the double pulsar PSR J0737–3039 has opened a new perspective for testing the predictions of general relativity also in relation to the precession of spinning bodies.  相似文献   

10.
Due to high stable rotations, timing of pulsars provides a natural tool to correct the frequency deviation of spaceborne atomic clocks. Based on processing the observational data about a year of Crab pulsar given by XPNAV-1 satellite, we study the possibility of correcting the frequency deviation of spaceborne atomic clocks using pulsar timing. According to the observational data in X-ray band and the timing model parameters from radio observations, the pre-fit timing residuals with a level of 6...  相似文献   

11.
结合国家导航体系发展与工程应用迫切需求,主要讨论了X射线脉冲星计时导航的应用模式,并介绍了国内外空间试验进展。总结了脉冲星计时地基射电与空间X射线观测的特点和发展现状,阐释了脉冲星时研究与发展的重要意义;总结并归纳了X射线脉冲星导航的应用特点和现有水平,讨论了X射线脉冲星导航的技术优势和典型应用场景;总结了国内外X射线脉冲星计时导航的空间试验进展。根据国内外的空间试验结果,脉冲星时稳定度可达10-14量级,脉冲星导航精度可达到km量级,初步具备在轨应用价值。因此,加快推进国内脉冲星计时导航技术的在轨演示验证与工程应用具有重要意义。  相似文献   

12.
利用脉冲星极其稳定的自转频率可以形成一种天文时间基准,部分毫秒级脉冲星的稳定度甚至超越了原子钟,但其观测稳定度易受多种噪声源的影响。一般来说,不同的脉冲星的噪声大部分是相互独立的,因此可以通过加权综合和滤波算法构建综合脉冲星时,有效去除计时残差中的噪声。针对此问题,采用10颗毫秒级脉冲星的国际脉冲星计时阵列(international pulsar timing array, IPTA)数据进行了稳定度评估分析,其中7颗脉冲星的观测数据长度在10年以上。综合考虑单颗脉冲星稳定度评估的结果和观测数据的长度后,筛选出了4颗脉冲星用于构建综合脉冲星时。同时对比了经典加权算法、小波分解算法和维纳滤波算法的综合脉冲星时稳定度结果。结果表明:脉冲星的长期稳定度优于短期稳定度,2颗脉冲星在1年处稳定度达10-15量级,8颗在1 000天处也达到了10-15量级,其中PSR J1600-3053在5年处稳定度达到了最佳,为7.023×10-16 。此外,三种算法中,维纳滤波建立的综合脉冲星时稳定度最佳,在5年处达到了1.502×10-15,优于参与构建的其他所有脉冲星的5年稳定度。  相似文献   

13.
The radio science investigations planned for Galileo's 6-year flight to and 2-year orbit of Jupiter use as their instrument the dual-frequency radio system on the spacecraft operating in conjunction with various US and German tracking stations on Earth. The planned radio propagation experiments are based on measurements of absolute and differential propagation time delay, differential phase delay, Doppler shift, signal strength, and polarization. These measurements will be used to study: the atmospheric and ionospheric structure, constituents, and dynamics of Jupiter; the magnetic field of Jupiter; the diameter of Io, its ionospheric structure, and the distribution of plasma in the Io torus; the diameters of the other Galilean satellites, certain properties of their surfaces, and possibly their atmospheres and ionospheres; and the plasma dynamics and magnetic field of the solar corona. The spacecraft system used for these investigations is based on Voyager heritage but with several important additions and modifications that provide linear rather than circular polarization on the S-band downlink signal, the capability to receive X-band uplink signals, and a differential downlink ranging mode. Collaboration between the investigators and the space-craft communications engineers has resulted in the first highly-stable, dual-frequency, spacecraft radio system suitable for simultaneous measurements of all the parameters normally attributed to radio waves.  相似文献   

14.
The spectral and polarization properties of thermal cyclotron radio emission from a hot coronal loop with a current along the axis are computed. The magnetic field is supposed to have a component along the loop axis as well as a poloidal part due to the current, both components being of comparable magnitude. In this specific configuration a helical magnetic field is present with a remarkable minimum of its absolute value along the loop axis and a maximum at its periphery. The presence of one or two maxima of magnetic field value along the line of sight results in increasing optical thickness of the gyroresonance layers at appropriate frequencies in the microwave band and, therefore, in enhanced radio emission at those harmonics which are optically thin (for example,s=4). These cannot be observed in models with the commonly employed magnetic field configuration (longitudinal along the loop axis).We show that the frequency spectrum of thermal cyclotron radiation from a hot coronal loop with a helical magnetic field differs from that of the standards-component source (with smooth frequency characteristics and polarization corresponding toe-mode) in that plenty of fine structures (line-like features and cut-offs) are present and theo-mode is prevalent in some frequency intervals. The enhanced radio emission at high harmonics and the complicated form of frequency spectrum in the model considered imply that some microwave sources, which are poorly explained in traditional models of solar active regions, may be associated with helical magnetic fields in hot coronal loops. Computations allow one to indicate spectral and polarizational peculiarities of local sources testifying to the presence of a helical magnetic field.  相似文献   

15.
Green  J.L.  Benson  R.F.  Fung  S.F.  Taylor  W.W.L.  Boardsen  S.A.  Reinisch  B.W.  Haines  D.M.  Bibl  K.  Cheney  G.  Galkin  I.A.  Huang  X.  Myers  S.H.  Sales  G.S.  Bougeret  J.-L.  Manning  R.  Meyer-Vernet  N.  Moncuquet  M.  Carpenter  D.L.  Gallagher  D.L.  Reiff  P.H. 《Space Science Reviews》2000,91(1-2):361-389
The Radio Plasma Imager (RPI) will be the first-of-its kind instrument designed to use radio wave sounding techniques to perform repetitive remote sensing measurements of electron number density (N e) structures and the dynamics of the magnetosphere and plasmasphere. RPI will fly on the Imager for Magnetopause-to-Aurora Global Exploration (IMAGE) mission to be launched early in the year 2000. The design of the RPI is based on recent advances in radio transmitter and receiver design and modern digital processing techniques perfected for ground-based ionospheric sounding over the last two decades. Free-space electromagnetic waves transmitted by the RPI located in the low-density magnetospheric cavity will be reflected at distant plasma cutoffs. The location and characteristics of the plasma at those remote reflection points can then be derived from measurements of the echo amplitude, phase, delay time, frequency, polarization, Doppler shift, and echo direction. The 500 m tip-to-tip X and Y (spin plane) antennas and 20 m Z axis antenna on RPI will be used to measures echoes coming from distances of several R E. RPI will operate at frequencies between 3 kHz to 3 MHz and will provide quantitative N e values from 10–1 to 105 cm–3. Ray tracing calculations, combined with specific radio imager instrument characteristics, enables simulations of RPI measurements. These simulations have been performed throughout an IMAGE orbit and under different model magnetospheric conditions. They dramatically show that radio sounding can be used quite successfully to measure a wealth of magnetospheric phenomena such as magnetopause boundary motions and plasmapause dynamics. The radio imaging technique will provide a truly exciting opportunity to study global magnetospheric dynamics in a way that was never before possible.  相似文献   

16.
We review the long term variability properties of accretion powered X-ray pulsars in massive Pop. I binary systems and discuss how their characteristics, in particular the large dynamic range in luminosity of the transient pulsars, can be understood in terms of the interaction of the accreting material with the neutron star magnetosphere. We point out that the X-ray pulsar transient activity in general can be due to the transition between direct wind accretion and a regime in which the centrifugal drag exerted by the pulsar magnetosphere inhibits accretion onto the neutron star surface.  相似文献   

17.
Flat spectrum radio sources from the MPIfR north pole radio survey at 5 GHz (Kühret al. 1981) were observed with the Einstein X-ray observatory, at optical, mm, and radio wavelengths. The sources show rather extreme properties in all wavelength regions. Here we review the results for the first six sources from the survey (Kühret al. 1981, Biermannet al. 1981a, b, c, Biermann and Schlickeiser 1981, Frickeet al. 1981, Eckartet al. 1981).  相似文献   

18.
By the term "m-distributed optical signal" we mean a noise-like optical signal whose envelope (or intensity) fluctuation probability is modeled by Nakagami's "m-distribution." Using the m-distribution which has been widely used as an analytical model of the fading envelope in radio communications, it is shown that one can generally analyze the statistical properties such as the photoelectron count probabilities and error probabilities for the wider class of noise-like optical signals; some numerical results are also given.  相似文献   

19.
This review summarizes the observational achievements at radio and infrared wavelengths since 1984 concerning the circumstellar envelopes of evolved stars. The main emphasis is on our increased knowledge of late stellar evolution, in particular during the asymptotic giant branch phase and the transition to the planetary nebula stage, and on the properties of gas/dust envelopes formed by stellar mass loss. It is not a critical review, and it is essentially free from historical references.  相似文献   

20.
The scientific motivation for X-ray polarimetry is discussed with particular emphasis on the information that might be obtained on the binary X-ray pulsars in addition to a number of other classes of objects including solar flares. Detailed discussions are given for Thomson-scattering and Bragg-crystal polarimeters with numerical estimates for the sensitivity of various existing and proposed instruments.Presented at the International Conference on X-Rays in Space held at the University of Calgary, Calgary, Canada, 14–21 August 1974  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号