首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
2.
Numerical dynamo models are increasingly successful in modeling many features of the geomagnetic field. Moreover, they have proven to be a useful tool for understanding how the observations connect to the dynamo mechanism. More recently, dynamo simulations have also ventured to explain the surprising diversity of planetary fields found in our solar system. Here, we describe the underlying model equations, concentrating on the Boussinesq approximations, briefly discuss the numerical methods, and give an overview of existing model variations. We explain how the solutions depend on the model parameters and introduce the primary dynamo regimes. Of particular interest is the dependence on the Ekman number which is many orders of magnitude too large in the models for numerical reasons. We show that a minor change in the solution seems to happen at $\mbox {E}=3\mbox {$\times 10^{-6}$}$ whose significance, however, needs to be explored in the future. We also review three topics that have been a focus of recent research: field reversal mechanisms, torsional oscillations, and the influence of Earth’s thermal mantle structure on the dynamo. Finally we discuss the possibility of tidally or precession driven planetary dynamos.  相似文献   

3.
??EIT waves?? are large-scale coronal bright fronts (CBFs) that were first observed in 195 Å images obtained using the Extreme-ultraviolet Imaging Telescope (EIT) onboard the Solar and Heliospheric Observatory (SOHO). Commonly called ??EIT waves??, CBFs typically appear as diffuse fronts that propagate pseudo-radially across the solar disk at velocities of 100?C700 km?s?1 with front widths of 50?C100 Mm. As their speed is greater than the quiet coronal sound speed (c s ??200 km?s?1) and comparable to the local Alfvén speed (v A ??1000 km?s?1), they were initially interpreted as fast-mode magnetoacoustic waves ( $v_{f}=(c_{s}^{2} + v_{A}^{2})^{1/2}$ ). Their propagation is now known to be modified by regions where the magnetosonic sound speed varies, such as active regions and coronal holes, but there is also evidence for stationary CBFs at coronal hole boundaries. The latter has led to the suggestion that they may be a manifestation of a processes such as Joule heating or magnetic reconnection, rather than a wave-related phenomena. While the general morphological and kinematic properties of CBFs and their association with coronal mass ejections have now been well described, there are many questions regarding their excitation and propagation. In particular, the theoretical interpretation of these enigmatic events as magnetohydrodynamic waves or due to changes in magnetic topology remains the topic of much debate.  相似文献   

4.
This article reviews recent development of the theory of current loop coalescence and shock waves, giving particular attention to particle acceleration caused by these processes. First, explosive reconnection driven by the current loop coalescence and associated particle acceleration are studied by theoretical and magnetohydrodynamic simulation methods and the results are compared with observations of solar flares; this model gives a good explanation for the quasi-periodic structure of some solar flare bursts. Next follows a discussion of particle acceleration in association with fast magnetosonic shock waves. It is shown theoretically and by relativistic particle simulation that a quasi-perpendicular shock wave can accelerate trapped ions in the direction perpendicular to the ambient magnetic field up to speeds much greater than the Alfvén speed, . When the ambient magnetic field is rather strong ( ce pe ), both ions and electrons can be accelerated to relativistic energies. For both the nonrelativistic and relativistic cases, the time needed for the acceleration is very short; it is for the ions. These results are compared with the rapid and simultaneous acceleration of ions and electrons in the impulsive phase of solar flares.  相似文献   

5.
The OSIRIS-REx Thermal Emission Spectrometer (OTES) will provide remote measurements of mineralogy and thermophysical properties of Bennu to map its surface, help select the OSIRIS-REx sampling site, and investigate the Yarkovsky effect. OTES is a Fourier Transform spectrometer covering the spectral range 5.71–100 μm (\(1750\mbox{--}100~\mbox{cm}^{-1}\)) with a spectral sample interval of \(8.66~\mbox{cm}^{-1}\) and a 6.5-mrad field of view. The OTES telescope is a 15.2-cm diameter Cassegrain telescope that feeds a flat-plate Michelson moving mirror mounted on a linear voice-coil motor assembly. A single uncooled deuterated l-alanine doped triglycine sulfate (DLATGS) pyroelectric detector is used to sample the interferogram every two seconds. Redundant ~0.855 μm laser diodes are used in a metrology interferometer to provide precise moving mirror control and IR sampling at 772 Hz. The beamsplitter is a 38-mm diameter, 1-mm thick chemical vapor deposited diamond with an antireflection microstructure to minimize surface reflection. An internal calibration cone blackbody target provides radiometric calibration. The radiometric precision in a single spectrum is \(\leq2.2 \times 10^{-8}~\mbox{W}\,\mbox{cm}^{-2}\,\mbox{sr} ^{-1}/\mbox{cm}^{-1}\) between 300 and \(1350~\mbox{cm}^{-1}\). The absolute integrated radiance error is \(<1\%\) for scene temperatures ranging from 150 to 380 K. The overall OTES envelope size is \(37.5 \times 28.9 \times 52.2~\mbox{cm}\), and the mass is 6.27 kg. The power consumption is 10.8 W average. OTES was developed by Arizona State University with Moog Broad Reach developing the electronics. OTES was integrated, tested, and radiometrically calibrated on the Arizona State University campus in Tempe, AZ.  相似文献   

6.
The relative abundances of chemical elements and isotopes have been our most effective tool in identifying and understanding the physical processes that control populations of energetic particles. The early surprise in solar energetic particles (SEPs) was 1000-fold enhancements in \({}^{3}\mbox{He}/{}^{4}\mbox{He}\) from resonant wave-particle interactions in the small “impulsive” SEP events that emit electron beams that produce type III radio bursts. Further studies found enhancements in Fe/O, then extreme enhancements in element abundances that increase with mass-to-charge ratio \(A/Q\), rising by a factor of 1000 from He to Au or Pb arising in magnetic reconnection regions on open field lines in solar jets. In contrast, in the largest SEP events, the “gradual” events, acceleration occurs at shock waves driven out from the Sun by fast, wide coronal mass ejections (CMEs). Averaging many events provides a measure of solar coronal abundances, but \(A/Q\)-dependent scattering during transport causes variations with time; thus if Fe scatters less than O, Fe/O is enhanced early and depleted later. To complicate matters, shock waves often reaccelerate impulsive suprathermal ions left over or trapped above active regions that have spawned many impulsive events. Direct measurements of ionization states \(Q\) show coronal temperatures of 1–2 MK for most gradual events, but impulsive events often show stripping by matter traversal after acceleration. Direct measurements of \(Q\) are difficult and often unavailable. Since both impulsive and gradual SEP events have abundance enhancements that vary as powers of \(A/Q\), we can use abundances to deduce the probable \(Q\)-values and the source plasma temperatures during acceleration, ≈3 MK for impulsive SEPs. This new technique also allows multiple spacecraft to measure temperature variations across the face of a shock wave, measurements otherwise unavailable and provides a new understanding of abundance variations in the element He. Comparing coronal abundances from SEPs and from the slow solar wind as a function of the first ionization potential (FIP) of the elements, remaining differences are for the elements C, P, and S. The theory of the fractionation of ions by Alfvén waves shows that C, P, and S are suppressed because of wave resonances during chromospheric transport on closed magnetic loops but not on open magnetic fields that supply the solar wind. Shock waves can accelerate ions from closed coronal loops that easily escape as SEPs, while the solar wind must emerge on open fields.  相似文献   

7.
Lario  D.  Haggerty  D.K.  Roelof  E.C.  Tappin  S.J.  Forsyth  R.J.  Gosling  J.T. 《Space Science Reviews》2001,97(1-4):277-280
On day 49 of 1999 a strong interplanetary shock was observed by the ACE spacecraft located at 1 AU from the Sun. This shock was followed 10 hours later by a magnetic cloud (MC). A large solar energetic particle (SEP) event was observed in association with the arrival of the shock and the MC at ACE. The Ulysses spacecraft, located at 22° S heliolatitude and nearly the same ecliptic longitude as ACE, observed a large SEP event beginning on day 54 that peaked with the arrival of a solar wind and magnetic field disturbance on day 61. A magnetic cloud was observed by Ulysses on days 63–64. We suggest a scenario in which both spacecraft intercepted the same MC, although sampling different regions of it. We describe the effects that the MC produced on the streaming of energetic particles at both spacecraft. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

8.
NASA’s InSight lander will deploy a tripod-mounted seismometer package onto the surface of Mars in late 2018. Mars is expected to have lower seismic activity than the Earth, so minimisation of environmental seismic noise will be critical for maximising observations of seismicity and scientific return from the mission. Therefore, the seismometers will be protected by a Wind and Thermal Shield (WTS), also mounted on a tripod. Nevertheless, wind impinging on the WTS will cause vibration noise, which will be transmitted to the seismometers through the regolith (soil). Here we use a 1:1-scale model of the seismometer and WTS, combined with field testing at two analogue sites in Iceland, to determine the transfer coefficient between the two tripods and quantify the proportion of WTS vibration noise transmitted through the regolith to the seismometers. The analogue sites had median grain sizes in the range 0.3–1.0 mm, surface densities of \(1.3\mbox{--}1.8~\mbox{g}\,\mbox{cm}^{-3}\), and an effective regolith Young’s modulus of \(2.5^{+1.9}_{-1.4}~\mbox{MPa}\). At a seismic frequency of 5 Hz the measured transfer coefficients had values of 0.02–0.04 for the vertical component and 0.01–0.02 for the horizontal component. These values are 3–6 times lower than predicted by elastic theory and imply that at short periods the regolith displays significant anelastic behaviour. This will result in reduced short-period wind noise and increased signal-to-noise. We predict the noise induced by turbulent aerodynamic lift on the WTS at 5 Hz to be \(\sim2\times10^{-10}~\mbox{ms}^{-2}\,\mbox{Hz}^{-1/2}\) with a factor of 10 uncertainty. This is at least an order of magnitude lower than the InSight short-period seismometer noise floor of \(10^{-8}~\mbox{ms}^{-2}\,\mbox{Hz}^{-1/2}\).  相似文献   

9.
Airless bodies are directly exposed to ambient plasma and meteoroid fluxes, making them characteristically different from bodies whose dense atmospheres protect their surfaces from such fluxes. Direct exposure to plasma and meteoroids has important consequences for the formation and evolution of planetary surfaces, including altering chemical makeup and optical properties, generating neutral gas and/or dust exospheres, and leading to the generation of circumplanetary and interplanetary dust grain populations. In the past two decades, there have been many advancements in our understanding of airless bodies and their interaction with various dust populations. In this paper, we describe relevant dust phenomena on the surface and in the vicinity of airless bodies over a broad range of scale sizes from \(\sim10^{-3}~\mbox{km}\) to \(\sim10^{3}~\mbox{km}\), with a focus on recent developments in this field.  相似文献   

10.
为了在X射线脉冲星地面实验系统仿真源模拟产生X射线的基础上,能够快速稳定地得到脉冲轮廓,采用硬件历元叠加的方法获得脉冲轮廓。研究了用硬件实现历元叠加及其数据整合的算法,该算法首先在MATLAB现场可编程逻辑阵列(FPGA)中实现,再通过MATLAB硬件描述语言(HDL)代码生成模块把算法转换成HDL,经编译后获得配置硬件的Bit文件,最终在开发板FPGA上实现数据处理的硬件模块。一段时间内的光子到达时间数据通过MATLAB算法得到的脉冲轮廓数据与通过硬件模块处理后得到的数据结果存在误差,在单个时间窗口内误差最大值为2个光子数,误差平均值占光子数统计平均值的0.084%;两组统计的脉冲轮廓数据中不同数据占总数据个数的9.481%,这样的误差不影响后端模拟导航模块的导航。利用硬件实现的历元叠加及其数据整合模块具有处理速度快、设备紧凑、功耗低的特点,为航天器利用X射线脉冲星导航提供了一种可行的硬件数据处理技术上的支持。  相似文献   

11.
12.
Both the Ulysses and Galileo spacecraft detected energetic electrons and Langmuir waves that were associated with a type III radio burst on 10 December 1990. At the time of these observations, these spacecraft were in the ecliptic plane and separated by 0.4 AU, with Galileo near the Earth at 1 AU and Ulysses at 1.36 AU. From the measured electron arrival times, the propagation path lengths of the electrons to both Ulysses and Galileo were estimated to be significantly longer than the length of the Parker spiral. These long path lengths are interpreted as due to draping of the interplanetary magnetic field lines around a CME. The onset times of the Langmuir waves at Ulysses and Galileo coincided with the estimated arrival time of the 9 keV and 14 keV electrons, respectively.  相似文献   

13.
Until the ULYSSES spacecraft reached the polar regions of the solar wind, the only high-latitude measurements available were from indirect techniques. The most productive observations in regions of the solar wind between 5R and 200R have been the family of radio scattering techniques loosely referred to as Interplanetary Scintillation (IPS) (Coles, 1978). Useful observations can be obtained using a variety of radio sources, for example spacecraft beacons, planetary radar echoes and compact cosmic sources (quasars, active galactic nuclei, pulsars, galactic masers, etc.). However for measurement of the high-latitude solar wind cosmic sources provide the widest coverage and this review will be confined to such observations. IPS observations played a very important role in establishing that polar coronal holes (first observed in soft x-ray emission) were sources of fast solar wind streams which occasionally extend down to the equatorial region and are observed by spacecraft. Here I will review the IPS technique and show the variation of both the velocity and the turbulence level with latitude over the last solar cycle. I will also outline recent work and discuss comparisons that we hope to make between IPS and ULYSSES observations.  相似文献   

14.
刘将辉  李海阳  陆林  赵剑 《航空学报》2019,40(10):323068-323068
研究了追踪航天器逼近无控旋转目标航天器的安全制导问题,逼近过程中,追踪航天器需要躲避空间中的障碍物,同时需要避免与目标航天器的太阳能电池帆板和天线等附件发生碰撞。建立了视线坐标系下的两航天器间的相对运动方程,采用四元数描述目标航天器的姿态运动。将参考位置设为引力源,设计了吸引势函数。针对安全逼近问题,建立了球面安全区和锥面安全走廊,设计了安全势函数。将障碍物假设为具有一定半径的球体,设计了障碍物势函数。吸引势函数、安全势函数和障碍物势函数一起组成了混合势函数。为了解决整个势场中除参考位置外还可能存在其他局部极小点问题,对混合势函数进行了修正,保证参考位置位于混合势函数的最低点。利用Lyapunov稳定性理论对混合势函数进行了稳定性分析,推得符合要求的控制加速度,使追踪航天器沿着混合势函数的负梯度方向逼近无控旋转目标航天器。最后通过数值仿真验证了该方法的有效性。  相似文献   

15.
Auroral substorms are mostly manifestations of dissipative processes of electromagnetic energy. Thus, we consider a sequence of processes consisting of the power supply (dynamo), transmission (currents/circuits) and dissipations (auroral substorms-the end product), namely the electric current line approach. This work confirms quantitatively that after accumulating magnetic energy during the growth phase, the magnetosphere unloads the stored magnetic energy impulsively in order to stabilize itself. This work is based on our result that substorms are caused by two current systems, the directly driven (DD) current system and the unloading system (UL). The most crucial finding in this work is the identification of the UL (unloading) current system which is responsible for the expansion phase. A very tentative sequence of the processes leading to the expansion phase (the generation of the UL current system) is suggested for future discussions.
  1. (1)
    The solar wind-magnetosphere dynamo enhances significantly the plasma sheet current when its power is increased above \(10^{18}~\mbox{erg}/\mbox{s}\) (\(10^{11}\) w).
     
  2. (2)
    The magnetosphere accumulates magnetic energy during the growth phase, because the ionosphere cannot dissipate the increasing power because of a low conductivity. As a result, the magnetosphere is inflated, accumulating magnetic energy.
     
  3. (3)
    When the power reaches \(3\mbox{--}5\times 10^{18}~\mbox{erg}/\mbox{s}\) (\(3\mbox{--}5\times 10^{11}\) w) for about one hour and the stored magnetic energy reaches \(3\mbox{--}5\times10^{22}\) ergs (\(10^{15}\) J), the magnetosphere begins to develop perturbations caused by current instabilities (the current density \({\approx}3\times 10^{-12}~\mbox{A}/\mbox{cm}^{2}\) and the total current \({\approx}10^{6}~\mbox{A}\) at 6 Re). As a result, the plasma sheet current is reduced.
     
  4. (4)
    The magnetosphere is thus deflated. The current reduction causes \(\partial B/\partial t > 0\) in the main body of the magnetosphere, producing an earthward electric field. As it is transmitted to the ionosphere, it becomes equatorward-directed electric field which drives both Pedersen and Hall currents and thus generates the UL current system.
     
  5. (5)
    A significant part of the magnetic energy is accumulated in the main body of the magnetosphere (the inner plasma sheet) between 4 Re and 10 Re, because the power (Poynting flux \([ \boldsymbol{E} \times \boldsymbol{B} ])\) is mainly directed toward this region which can hold the substorm energy.
     
  6. (6)
    The substorm intensity depends on the location of the energy accumulation (between 4 Re and 10 Re), the closer the location to the earth, the more intense substorms becomes, because the capacity of holding the energy is higher at closer distances. The convective flow toward the earth brings both the ring current and the plasma sheet current closer when the dynamo power becomes higher.
     
This proposed sequence is not necessarily new. Individual processes involved have been considered by many, but the electric current approach can bring them together systematically and provide some new quantitative insights.
  相似文献   

16.
自主导航是航天器自主运行的核心关键技术。状态估计是实现航天器自主导航的核心手段,是指实时确定航天器在轨位置、速度和姿态等导航参数,是航天器自主导航技术的重点发展方向之一。首先,针对航天器自主导航的实际需求,阐述了研究航天器自主导航状态估计方法的必要性,具体从导航系统可观测性分析、导航滤波算法、导航系统误差补偿3个方面介绍了航天器自主导航状态估计方法的研究现状;然后,分析并总结状态估计方法在航天器自主导航系统中的实际应用;最后,结合理论研究和实际应用,给出了状态估计方法目前存在的主要问题并对其后续发展进行了展望。  相似文献   

17.
We present the status and open problems of nucleosynthesis in supernova explosions of both types, responsible for the production of the intermediate mass, Fe-group and heavier elements (with the exception of the main s-process). Constraints from observations can be provided through individual supernovae (SNe) or their remnants (e.g. via spectra and gamma-rays of decaying unstable isotopes) and through surface abundances of stars which witness the composition of the interstellar gas at their formation. With a changing fraction of elements heavier than He in these stars (known as metallicity) the evolution of the nucleosynthesis in galaxies over time can be determined. A complementary way, related to gamma-rays from radioactive decays, is the observation of positrons released in \(\beta^{+}\)-decays, as e.g. from \(^{26}\mbox{Al}\), \(^{44}\mbox{Ti}\), \(^{56,57}\mbox{Ni}\) and possibly further isotopes of their decay chains (in competition with the production of \(e^{+}e^{-}\) pairs in acceleration shocks from SN remnants, pulsars, magnetars or even of particle physics origin). We discuss (a) the role of the core-collapse supernova explosion mechanism for the composition of intermediate mass, Fe-group (and heavier?) ejecta, (b) the transition from neutron stars to black holes as the final result of the collapse of massive stars, and the relation of the latter to supernovae, faint supernovae, and gamma-ray bursts/hypernovae, (c) Type Ia supernovae and their nucleosynthesis (e.g. addressing the \(^{55}\mbox{Mn}\) puzzle), plus (d) further constraints from galactic evolution, \(\gamma\)-ray and positron observations. This is complemented by the role of rare magneto-rotational supernovae (related to magnetars) in comparison with the nucleosynthesis of compact binary mergers, especially with respect to forming the heaviest r-process elements in galactic evolution.  相似文献   

18.
Due to high stable rotations, timing of pulsars provides a natural tool to correct the frequency deviation of spaceborne atomic clocks. Based on processing the observational data about a year of Crab pulsar given by XPNAV-1 satellite, we study the possibility of correcting the frequency deviation of spaceborne atomic clocks using pulsar timing. According to the observational data in X-ray band and the timing model parameters from radio observations, the pre-fit timing residuals with a level of 6...  相似文献   

19.
Canuto  E.  Martella  P.  Sechi  G. 《Space Science Reviews》2003,108(1-2):357-366
The Gravity field and steady-state Ocean Circulation Explorer (GOCE) satellite, currently planned to he launched in the course of 2006, will require a precise drag compensation and a fine attitude control along the Local Orbiting Reference Frame (LORF) of a polar Sun-synchronous low orbit, allowing the Earth gravity field to be recovered with unprecedented accuracy by post-processing the scientific telemetry. To this aim, the spectral density of the spacecraft linear and angular accelerations must be limited below 0.025 respectively, in the frequency range from 5 mHz to 0.1 Hz, the gradiometer measurement bandwidth. In the same range, the orientation errors of the spacecraft in the LORF and of the LORF in the inertial frame must be kept below 10 . The Drag-Free Mode, encharged of drag-free and attitude control (DFAC) during measurement phases, determines the spacecraft state vector using a very precise gradiometer, one large Field-of-View Star Tracker and a Satellite-to-Satellite Tracking Instrument. Force and torque commands are actuated by two assemblies of thrusters: a single ion-thruster acting along the orbital direction, a set of eight micro-thrusters acting along the other five degrees of freedom. To cover every mission scenario, other control modes have been studied and designed: the Coarse Pointing Mode dedicated to rate damping and Sun acquisition, the Fine Pointing Mode handling the transition to Drag-Free Mode and the Ultimate Safe Mode, a survival operative mode to improve mission reliability. Results presented in this paper give a positive perspective on the solidity of the current DFAC design. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

20.
A Semicoherent Detection and Doppler Estimation Statistic   总被引:2,自引:0,他引:2  
Consider a uniform train of M coherent short pulses transmitted by a radar and received with a Doppler shift. When thermal noise is present, let the mth sample of the return at the video be represented by the complex process Zm. A novel detection and Doppler estimation criterion is analyzed which depends on the semicoherent statistic begin{equation*}{Z_{K}}^prime = sum_{m=k+1}^{M} {^{z}m^{z}m-k}^{ *}end{equation*} where the asterisk stands for complex conjugate. Its characteristics are also studied when the real and imaginary parts of Zm are digitized to one bit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号