首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
航空   7篇
航天技术   4篇
  2009年   2篇
  2008年   2篇
  2006年   2篇
  2005年   1篇
  2002年   1篇
  2000年   2篇
  1995年   1篇
排序方式: 共有11条查询结果,搜索用时 15 毫秒
1.
Green  J.L.  Benson  R.F.  Fung  S.F.  Taylor  W.W.L.  Boardsen  S.A.  Reinisch  B.W.  Haines  D.M.  Bibl  K.  Cheney  G.  Galkin  I.A.  Huang  X.  Myers  S.H.  Sales  G.S.  Bougeret  J.-L.  Manning  R.  Meyer-Vernet  N.  Moncuquet  M.  Carpenter  D.L.  Gallagher  D.L.  Reiff  P.H. 《Space Science Reviews》2000,91(1-2):361-389
The Radio Plasma Imager (RPI) will be the first-of-its kind instrument designed to use radio wave sounding techniques to perform repetitive remote sensing measurements of electron number density (N e) structures and the dynamics of the magnetosphere and plasmasphere. RPI will fly on the Imager for Magnetopause-to-Aurora Global Exploration (IMAGE) mission to be launched early in the year 2000. The design of the RPI is based on recent advances in radio transmitter and receiver design and modern digital processing techniques perfected for ground-based ionospheric sounding over the last two decades. Free-space electromagnetic waves transmitted by the RPI located in the low-density magnetospheric cavity will be reflected at distant plasma cutoffs. The location and characteristics of the plasma at those remote reflection points can then be derived from measurements of the echo amplitude, phase, delay time, frequency, polarization, Doppler shift, and echo direction. The 500 m tip-to-tip X and Y (spin plane) antennas and 20 m Z axis antenna on RPI will be used to measures echoes coming from distances of several R E. RPI will operate at frequencies between 3 kHz to 3 MHz and will provide quantitative N e values from 10–1 to 105 cm–3. Ray tracing calculations, combined with specific radio imager instrument characteristics, enables simulations of RPI measurements. These simulations have been performed throughout an IMAGE orbit and under different model magnetospheric conditions. They dramatically show that radio sounding can be used quite successfully to measure a wealth of magnetospheric phenomena such as magnetopause boundary motions and plasmapause dynamics. The radio imaging technique will provide a truly exciting opportunity to study global magnetospheric dynamics in a way that was never before possible.  相似文献   
2.
The Radio Plasma Imager investigation on the IMAGE spacecraft   总被引:1,自引:0,他引:1  
Reinisch  B.W.  Haines  D.M.  Bibl  K.  Cheney  G.  Galkin  I.A.  Huang  X.  Myers  S.H.  Sales  G.S.  Benson  R.F.  Fung  S.F.  Green  J.L.  Boardsen  S.  Taylor  W.W.L.  Bougeret  J.-L.  Manning  R.  Meyer-Vernet  N.  Moncuquet  M.  Carpenter  D.L.  Gallagher  D.L.  Reiff  P. 《Space Science Reviews》2000,91(1-2):319-359
Radio plasma imaging uses total reflection of electromagnetic waves from plasmas whose plasma frequencies equal the radio sounding frequency and whose electron density gradients are parallel to the wave normals. The Radio Plasma Imager (RPI) has two orthogonal 500-m long dipole antennas in the spin plane for near omni-directional transmission. The third antenna is a 20-m dipole along the spin axis. Echoes from the magnetopause, plasmasphere and cusp will be received with the three orthogonal antennas, allowing the determination of their angle-of-arrival. Thus it will be possible to create image fragments of the reflecting density structures. The instrument can execute a large variety of programmable measuring options at frequencies between 3 kHz and 3 MHz. Tuning of the transmit antennas provides optimum power transfer from the 10 W transmitter to the antennas. The instrument can operate in three active sounding modes: (1) remote sounding to probe magnetospheric boundaries, (2) local (relaxation) sounding to probe the local plasma frequency and scalar magnetic field, and (3) whistler stimulation sounding. In addition, there is a passive mode to record natural emissions, and to determine the local electron density, the scalar magnetic field, and temperature by using a thermal noise spectroscopy technique.  相似文献   
3.
Fine structure of type IV radio solar bursts with a great variety and complexity often give much information in different ways and enable estimation of various coronal characteristics. In this work, we expose our new method for fine structure revealing and separation of two basic kinds of type IV fine structure, as fibers and pulsations. We also estimate frequency drift of fibers from dynamic spectra, clean from continuous background, with a prototype method using 2-D Fourier transform and we estimate periodicities of fibers as well as pulsations with continuous wavelet transform. Working with the last method we found periodicities close to 3 min umbral oscillations and 5 min global solar oscillations.  相似文献   
4.
We survey the subject of Coronal Mass Ejections (CMEs), emphasizing knowledge available prior to about 2003, as a synopsis of the phenomenology and its interpretation.  相似文献   
5.
WAVES: The radio and plasma wave investigation on the wind spacecraft   总被引:3,自引:0,他引:3  
The WAVES investigation on the WIND spacecraft will provide comprehensive measurements of the radio and plasma wave phenomena which occur in Geospace. Analyses of these measurements, in coordination with the other onboard plasma, energetic particles, and field measurements will help us understand the kinetic processes that are important in the solar wind and in key boundary regions of the Geospace. These processes are then to be interpreted in conjunction with results from the other ISTP spacecraft in order to discern the measurements and parameters for mass, momentum, and energy flow throughout geospace. This investigation will also contribute to observations of radio waves emitted in regions where the solar wind is accelerated. The WAVES investigation comprises several innovations in this kind of instrumentation: among which the first use, to our knowledge, of neural networks in real-time on board a scientific spacecraft to analyze data and command observation modes, and the first use of a wavelet transform-like analysis in real time to perform a spectral analysis of a broad band signal.  相似文献   
6.
On October 25th, 2006, NASA’s two STEREO spacecraft were launched which are designed to increase our knowledge of the physics of the solar system. On board they carry a sophisticated radio experiment, called S/WAVES. The key technology, used by S/WAVES is the direction finding capability in addition to the use of two spacecraft which makes it possible to triangulate radio sources. Direction finding requires the reception properties of the antennas to be known very accurately. We applied several different methods to calibrate the S/WAVES antennas. In this paper the methods are described and compared and the results are presented and discussed with respect to advantages and disadvantages of the different methods.  相似文献   
7.
This paper introduces and describes the radio and plasma wave investigation on the STEREO Mission: STEREO/WAVES or S/WAVES. The S/WAVES instrument includes a suite of state-of-the-art experiments that provide comprehensive measurements of the three components of the fluctuating electric field from a fraction of a hertz up to 16 MHz, plus a single frequency channel near 30 MHz. The instrument has a direction finding or goniopolarimetry capability to perform 3D localization and tracking of radio emissions associated with streams of energetic electrons and shock waves associated with Coronal Mass Ejections (CMEs). The scientific objectives include: (i) remote observation and measurement of radio waves excited by energetic particles throughout the 3D heliosphere that are associated with the CMEs and with solar flare phenomena, and (ii) in-situ measurement of the properties of CMEs and interplanetary shocks, such as their electron density and temperature and the associated plasma waves near 1 Astronomical Unit (AU). Two companion papers provide details on specific aspects of the S/WAVES instrument, namely the electric antenna system (Bale et al., Space Sci. Rev., 2007) and the direction finding technique (Cecconi et al., Space Sci. Rev., 2007).  相似文献   
8.
The STEREO/Waves experiment is dedicated to the study of inner heliosphere radio emissions. This experiment is composed of a set of two identical receivers placed on each of the two STEREO spacecraft. The STEREO/Waves receivers have instantaneous Goniopolarimetric (GP) capabilities (also referred to as direction-finding capabilities). This means that it is possible to retrieve the direction of arrival of an incoming electromagnetic radio wave, its flux and its polarization. We review the state of the art of GP-capable radio receivers and available GP techniques. We then present the GP capabilities of the STEREO/Waves experiment. We finally show some GP results on solar Type III radio bursts, using data recorded with the Cassini/RPWS/HFR, which are very similar to the STEREO/Waves data.  相似文献   
9.
We present the solar wind plasma parameters obtained from the Wind spacecraft during more than nine years, encompassing almost the whole solar cycle 23. Since its launch in November 1994 Wind has frequently observed the in-ecliptic solar wind upstream of the Earth’s bow shock. The WIND/WAVES thermal noise receiver was specially designed to measure the in situ plasma thermal noise spectra, from which the electron density and temperature can be accurately determined. We present and discuss histograms of such measurements performed from 1994 to 2003. Using these large data sets, we study the density and core temperature variations with solar activity cycle and with different regimes of the solar wind. We confirm the anticorrelation of the electron density with the sunspot number, and obtain a positive correlation of the core temperature, with the sunspot number.  相似文献   
10.
We revisit the transient interplanetary events of January 1 and September 23, 1978. Using in-situ and remote sensing observations at locations widely separated in longitudes and distances from the Sun, we infer that in both cases the overall shock surface had a very fast “nose” region with speeds >900 and >1500 km−1 in the January and September events, respectively, and much slower flank speeds (∼600 km−1 or less), suggesting a shock surface with a strong speed gradient with heliospheric longitude. The shock-nose regions are thus likely efficient acceleration sites of MeV ions, even at 1 AU from the Sun. Our 3D magnetohydrodynamics modeling suggests that a 24° × 24° localized disturbance at 18 solar radii injecting momentum 100 times the background solar wind input over 1 h can produce a disturbance in semi-quantitative agreement with the observed shock arrival time, plasma density and velocity time series in the January 1978 event.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号