首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
双性能粉末高温合金涡轮盘的研究进展   总被引:4,自引:1,他引:4  
粉末高温合金由于在高温条件下表现出一系列优越的性能而成为制造高推重比航空发动机涡轮盘等热端部件的首选材料,特别是近年来对具有双晶粒组织的双性能涡轮盘不断深入的研究,使粉末高温合金应用前景更加乐观.本文论述国内外双性能粉末高温合金涡轮盘的研究进展,重点分析在制备中面临的问题,并对国内研制双性能涡轮盘提出建议.  相似文献   

2.
航空发动机双性能盘制造技术与机理的研究进展   总被引:2,自引:0,他引:2  
具有双重组织的双性能涡轮盘和压气机盘因其优秀的综合性能而成为制造高推重比航空发动机的研究热点.介绍国内外航空发动机用高温合金、钛合金双性能盘的研究进展,对双合金双组织双性能盘和单合金双组织双性能盘进行比较,着重分析两类盘在制造过程存在的主要问题,未来双性能盘的研究重点将落在适合双重热处理的粉末合金和钛合金、双重热处理装置改进、超细晶盘坯和双合金连接弱化方面.  相似文献   

3.
本系统地叙述了SJ412-1火焰筒(HG3039)热处理工艺的全过程,预先进行了半成品和胎具有工艺试验,并提出了针对固溶强化高温合金固溶处理之后,增加一道稳定化时效的新工艺,所总结的工艺技术经验,对于热处理类似的用高温合金制造的火焰稠,加力燃烧室等航空发动机试验件,以及其它薄壁,多孔,外形几何尺寸大,易变形,精度高的热处理零部件,都具有重要的借监作用。本对从事燃气涡轮热处理试验与研究的同志也具有参考作用。  相似文献   

4.
在涡扇、涡轴两种中、小型燃气涡轮发动机的研制中,采用了较多的钛合金、高温合金和高强结构材料和粉末盘热等静压、单晶叶片精铸、等温锻造、无余量整体精铸、大型薄壁带铸造油路的名合金铸造、多弧等离子镀、蜂窝激光焊、高温真空钎焊和钛合金的锻造、铸造、表面处理、焊接等新工艺,保证了新机性能,使中小涡轮燃气发动机制造技术上了一个新台阶。  相似文献   

5.
随着航空工业的发展,对发动机特别是涡轮叶片的性能要求也越来越苛刻。目前涡轮叶片的组织主要为柱状晶或单晶,采 用定向凝固技术制造。由于合金元素种类繁多、叶片形状和内腔复杂,在制造过程中叶片容易产生各种铸造缺陷,如杂晶、大/小角晶 界、雀斑等,导致叶片合格率低、研发周期长、制造成本高。数值模拟技术作为一种低能耗、高效率、短周期的研究方法,能有效预测缺 陷产生,优化涡轮叶片定向凝固工艺,提高成品率。介绍了高温合金涡轮叶片定向凝固模拟的物理数学模型,总结了国内外航发叶片 成形过程中数值模拟技术的研究进展,并对其发展方向进行了展望。  相似文献   

6.
涡轮叶片是航空发动机及地面燃气轮机的重要热端部件,研究其损伤行为对涡轮叶片的制造及修复工作均有重要的意义。本文研究了长时与短时服役涡轮叶片的蠕变损伤行为,发现二者在蠕变空洞的形成机理上大致相同,而γ′相与碳化物的退化反应则有所差异,长时服役涡轮叶片的γ′相形貌更加粗大且不规则。对于碳化物,长时服役叶片的碳化物发生了由一次MC型向二次M23C6型的分解,而短时服役叶片的碳化物发生了由MC(1)型向MC(2)型的转化。此外,针对两种不同的叶片材料(K002和GTD-111高温合金),研究了不同的固溶处理制度对γ′相溶解行为的影响,发现提高固溶温度和增加固溶保温时间可以促进两种材料γ′相的溶解行为;而随着固溶时间的增加,两种材料的溶解激活能均逐渐增大,K002合金在不同固溶保温时间中的溶解激活能均大于GTD-111合金。  相似文献   

7.
铸型搅动法细晶铸造使K418B合金整体涡轮获得了细小、均匀的等轴晶粒,改善了合金中初生MC和γ′相的分布形态,并使它们的平均尺寸减小。细晶铸造K418B合金整体涡轮材料在450~650℃的低周疲劳寿命至少是普通铸造的4倍。  相似文献   

8.
黄小宝  陈斌  刘建宇 《航空学报》1988,9(8):423-427
 采用传统制造工艺制作的高温合金涡轮盘往往出现晶粒度粗大。不均匀以及宏、微观偏析等问题。这不仅会引起涡轮盘力学性能的不均匀性,而且降低了合金的强度、延性和抗疲劳性。采用粉末冶金制造工艺可有效地改善盘件的冶金质量,使组织均匀,晶粒细化,提高了力学性能和使用的可靠性。我国近年来进行了FGH95(相当于Rene 95)粉末涡轮盘的研制工作。FGH95粉末盘通过热等静压和等温锻造成型,由于热等静压后的坯料原始  相似文献   

9.
本文是在分析某型发动机用GH4037合金制造的涡轮叶片生产质量和使用故障原因的基础上,研究发展的一种简化涡轮叶片热处理工艺。采用该工艺生产的涡轮叶片经受了多次寿命的台架试车考验和试用。  相似文献   

10.
Inconel 718合金是一种综合机械性能优良的高温合金,在国内外应用非常广泛。在国内主要用于制造多种先进发动机的涡轮盘、机匣、涡轮叶片等重要零件。由于高温合金塑性大,韧性高,导热性差,给切削加工带来了困难,如在拉削加工Inconel 718合金时,拉刀齿升量的大小就直接影响着合金表面质量,本课题对此进行了试验研究。  相似文献   

11.
航空发动机粉末冶金涡轮盘的新发展   总被引:1,自引:0,他引:1  
为满足现役航空涡扇发动机改进改型和新型航空涡扇发动机研制的需要,航空发动机设计与制造商开发了新一代高温粉末合金材料,同时,根据涡轮盘的特殊工作条件,研究了双性能涡轮盘和双性能整体涡轮等综合技术。  相似文献   

12.
毕中南 《大飞机》2021,(3):12-15
航空发动机是现代工业皇冠上的明珠,可以衡量一个国家的综合技术实力.在燃气涡轮式航空发动机中,高温合金用量通常占到发动机总重量的40%以上,因而高温合金被誉为"现代航空发动机的基石".决定发动机整机性能、可靠性和安全性的关键热端部件,如涡轮盘、叶片、燃烧室等均主要采用高温合金制造.  相似文献   

13.
低惯量涡轮转子结构设计与优化   总被引:1,自引:1,他引:0  
论述了低惯量涡轮转子结构设计的特点和要求。在发动机载荷条件下,开展了带双辐板涡轮盘的低惯量涡轮转子结构设计研究。特别是针对双辐板涡轮盘结构及其连接结构的设计特点,进行了经验设计、结构拓扑优化和形状优化。对优化得到的两种双辐板涡轮盘结构形式进行了对比分析,并对焊接的双辐板涡轮盘结构的制造工艺进行了简要分析。结果表明,低惯量涡轮转子采用双辐板涡轮盘结构可行,能有效减轻涡轮盘质量,降低转子热惯性和机械惯性。  相似文献   

14.
高压涡轮工作叶片采用高强度镍基高温合金DZ-22材料,无余量定向精密铸造成型,再加盖板经高温真空钎焊,构成整体。为了提高涡轮性能,降低应力水平,提高绝对温降,采用了高效内冷结构和有效的封严,减振措施,同时以变厚度,大刚度和变形协调的指导思想进行结构设计,用对流-冲击-气膜保护的复合冷却结构形式来满足绝对温降400K以上的要求。  相似文献   

15.
高强度定向凝固高温合金DZ22的研究和应用   总被引:4,自引:0,他引:4  
DZ22合金具有较高的中、高温性能,与国外著名的定向合金PWA 1422相当。它的成分以PWA 1422为基础,通过试验确定了更合适的Hf、C和Zr含量范围。现行的母合金熔炼工艺和铸件定向工艺是可靠的、稳定的。经过专门处理的返回料可以应用。在定向凝固过程中的铸型移动速度对零件的结晶取向和组织有较大影响。提高固溶热处理温度对高温纵向持久寿命和中温横向持久寿命有相反的作用。批生产实践证明:DZ22合金不仅具有较高的力学性能,而且具有良好的铸造、焊接和磨削加工性能,是制造先进航空发动机和地面燃气涡轮用的带有复杂薄壁内冷通道的涡轮叶片的理想材料。  相似文献   

16.
金属增材制造技术在航空发动机领域的应用   总被引:3,自引:1,他引:2  
从增材制造技术的基本概念出发,研究了适用于金属材料的定向能量沉积(DED)技术和粉末熔覆(PBF)技术的基本原理、技术内涵以及技术发展,重点分析了增材制造技术在开发燃油喷嘴和低压涡轮叶片等商业化零部件的应用,以及对涡轮叶片、整体叶轮和齿轮等航空发动机部件的修复.研究表明,金属增材制造技术广泛适用于钛合金、镍基合金、钛铝合金等金属材料的航空发动机部件,在设计、制造和经济可承受性等方面具有优势.   相似文献   

17.
FGH95粉末高温合金应力时效的组织和相分析   总被引:1,自引:0,他引:1  
 FGH95合金用于制造飞机发动机涡轮盘。曾有人对该合金长期时效的组织变化进行过研究,考虑到涡轮盘受温度和应力的双重作用,研究该合金长期应力时效过程中的相变规律和组织稳定性更有实际意义。  相似文献   

18.
高温合金整体叶轮铸造技术的研究进展   总被引:3,自引:2,他引:1  
评述了高温合金整体叶轮铸造技术的发展现状,介绍了高温合金整体叶轮铸造合金材料的发展,重点阐述了高温合金整体叶轮细晶铸造技术及双性能整体叶轮铸造技术,并指出了高温合金整体叶轮的发展趋势及应用前景。  相似文献   

19.
前言 涡轮转子是发动机的重要部件之一。某发动机燃气涡轮泵中的整体涡轮转子材料系采用GH169合金。涡轮叶片由电解加工制成。 GH169(Incooel 718)是时效硬化Ni-Cr-Fe基合金。该合金在国外广泛应用于复杂焊接板材构件,喷气发动机和火箭发动机的  相似文献   

20.
低压涡轮叶片定向凝固铸件质量受多种因素的制约,本文叙述了型壳制造、熔铸工艺对定向凝固涡轮叶片质量的影响,介绍了适合DZ4合金定向凝固叶片的工艺规程及质量控制。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号