首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
NASA’s COST LESS Team is pursuing strategies to reduce the cost and complexity of planning and executing space missions. The team’s technical goal is to reverse the trend of constructing unique solutions for similar problems. To this end, the team is exploring ways to represent mission functionality in terms of building blocks and is discovering approaches that could accommodate the same building blocks for seemingly disparate activities, such as organizing processed telemetry data, controlling onboard experiments, searching science archives, reducing and presenting information to science users, and supporting educational outreach. Reusable object technology (UOT), a research undertaking by the authors, is showing promise in recognizing similarities in functions which were previously viewed as unique because they appeared in different programs or mission phases. Since UOT is aimed at being implementation independent (i.e. the function performed could be accomplished manually, by an automated process, by a specialized instrument, etc.), no premature judgment for automation or autonomy need be made. In this paper, the authors attempt to strike a balance between theory and reality as they describe UOT, including its beginnings, its underpinning, its utility, and its potential for achieving substantive reductions in cost and complexity for the Agency’s space programs. The authors discuss their collaboration with the Center for EUV Astrophysics, University of California, Berkeley to reduce the cost and complexity of science investigations. Their multi-disciplinary plan incorporates both UOT and a complementary technology introduced in this paper, called interactive archives.  相似文献   

2.
Despite several decades of research and refinement in cost estimating tools and practices, the final cost of US space programs continues to exceed initial cost estimates by an average of more than 45%. Thus, program cost models not only exhibit error, they are seriously biased. A structured review surveyed techniques, approaches, models and conceptual tools related to space program cost estimating, to understand cost in complex space systems. Analysis shows problems of cost estimating result from the growing complexity of space programs, failures in managing growth, and mission failures. Although there is greater expectation for the models to accurately predict program costs, the current models used for seeking funding for large space programs are inadequate due to (1) inability to predict future, (2) lack of insight, and (3) process replaces judgment in decision making.  相似文献   

3.
In the past, one of the major problems in performing scientific investigations in space has been the high cost of developing, integrating, and transporting scientific experiments into space. The limited resources of unmanned spacecraft, coupled with the requirements for completely automated operations, was another factor contributing to the high costs of scientific research in space. In previous space missions after developing, integrating and transporting costly experiments into space and obtaining successful data, the experiment facility and spacecraft have been lost forever, because they could not be returned to earth. The objective of this paper is to present how the utilization of the Spacelab System will result in cost benefits to the scientific community, and significantly reduce the cost of space operations from previous space programs.The following approach was used to quantify the cost benefits of using the Spacelab System to greatly reduce the operational costs of scientific research in space. An analysis was made of the series of activities required to combine individual scientific experiments into an integrated payload that is compatible with the Space Transportation System (STS). These activities, including Shuttle and Spacelab integration, communications and data processing, launch support requirements, and flight operations were analyzed to indicate how this new space system, when compared with previous space systems, will reduce the cost of space research. It will be shown that utilization of the Spacelab modular design, standard payload interfaces, optional Mission Dependent Equipment (MDE), and standard services, such as the Experiment Computer Operating System (ECOS), allow the user many more services than previous programs, at significantly lower costs. In addition, the missions will also be analyzed to relate their cost benefit contributions to space scientific research.The analytical tools that are being developed at MSFC in the form of computer programs that can rapidly analyze experiment to Spacelab interfaces will be discussed to show how these tools allow the Spacelab integrator to economically establish the payload compatibility of a Spacelab mission.The information used in this paper has been assimilated from the actual experience gained in integrating over 50 highly complex, scientific experiments that will fly on the Spacelab first and second missions. In addition, this paper described the work being done at the Marshall Space Flight Center (MSFC) to define the analytical integration tools and techniques required to economically and efficiently integrate a wide variety of Spacelab payloads and missions. The conclusions reached in this study are based on the actual experience gained at MSFC in its roles of Spacelab integration and mission managers for the first three Spacelab missions. The results of this paper will clearly show that the cost benefits of the Spacelab system will greatly reduce the costs and increase the opportunities for scientific investigation from space.  相似文献   

4.
Space science missions are increasingly challenged today: in ambition, by increasingly sophisticated hypotheses tested; in development, by the increasing complexity of advanced technologies; in budgeting, by the decline of flagship-class mission opportunities; in management, by expectations for breakthrough science despite a risk-averse programmatic climate; and in planning, by increasing competition for scarce resources. How are the space-science missions of tomorrow being formulated? The paper describes the JPL Innovation Foundry, created in 2011, to respond to this evolving context. The Foundry integrates methods, tools, and experts that span the mission concept lifecycle. Grounded in JPL's heritage of missions, flight instruments, mission proposals, and concept innovation, the Foundry seeks to provide continuity of support and cost-effective, on-call access to the right domain experts at the right time, as science definition teams and Principal Investigators mature mission ideas from “cocktail napkin” to PDR. The Foundry blends JPL capabilities in proposal development and concurrent engineering, including Team X, with new approaches for open-ended concept exploration in earlier, cost-constrained phases, and with ongoing research and technology projects. It applies complexity and cost models, project-formulation lessons learned, and strategy analyses appropriate to each level of concept maturity. The Foundry is organizationally integrated with JPL formulation program offices; staffed by JPL's line organizations for engineering, science, and costing; and overseen by senior Laboratory leaders to assure experienced coordination and review. Incubation of each concept is tailored depending on its maturity and proposal history, and its highest-leverage modeling and analysis needs.  相似文献   

5.
深空探测器约束简化与任务规划方法研究   总被引:1,自引:0,他引:1       下载免费PDF全文
王晓晖  李爽 《宇航学报》2016,37(7):768-774
针对深空探测器现有的任务规划方法在处理系统间复杂约束时存在的约束复杂度高、实时响应能力差、计算效率低等问题,提出一种新的约束简化方法和启发式连续任务规划方法。首先,在时间线规划模型中根据两两子系统间的实时状态关系定义启发式因子,并利用该因子在规划周期内的取值建立子系统间时间线临时从属关系,从而合理地降低规划过程中的约束复杂程度;然后,在规划算法中采用时间线状态扩展策略,根据时间线临时从属关系对各子系统间的状态进行横向和纵向扩展,从而实现对目标任务规划进行快速排序。仿真结果表明由启发式因子建立的时间线临时从属关系有效简化了任务规划过程中的时间约束和资源约束、提高了任务规划的效率和灵活性。  相似文献   

6.
The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission used six planetary gravity assists in order to enable capture into orbit about Mercury. A key element of MESSENGER's successful trajectory was achieving the proper gravity assist from each planetary flyby. The criticality of the MESSENGER gravity assists levied tight accuracy requirements on the planetary-flyby targeting. Major errors could have precluded Mercury orbit insertion or required modifications to the trajectory that increased mission complexity, cost, and risk by requiring additional Mercury flybys and extending mission duration. Throughout the mission, MESSENGER modified its strategy for achieving accurate planetary flybys. By using solar sailing, the MESSENGER team was able to eliminate all of the flyby approach maneuvers without sacrificing flyby accuracy, thereby saving mission ΔV margin. The elimination of these approach maneuvers also markedly reduced mission risk, as these approach maneuvers were nominally planned during a time of heightened sensitivity to errors and precluded unique flyby science opportunities. The paradigm shift used by MESSENGER may be useful for other interplanetary missions, particularly if their trajectories require gravity assists in the inner solar system.  相似文献   

7.
SciBox is a new technology for planning and commanding science operations for Earth-orbital and planetary space missions. It has been incrementally developed since 2001 and demonstrated on several spaceflight projects. The technology has matured to the point that it is now being used to plan and command all orbital science operations for the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission to Mercury. SciBox encompasses the derivation of observing sequences from science objectives, the scheduling of those sequences, the generation of spacecraft and instrument commands, and the validation of those commands prior to uploading to the spacecraft. Although the process is automated, science and observing requirements are incorporated at each step by a series of rules and parameters to optimize observing opportunities, which are tested and validated through simulation and review. Except for limited special operations and tests, there is no manual scheduling of observations or construction of command sequences. SciBox reduces the lead time for operations planning by shortening the time-consuming coordination process, reduces cost by automating the labor-intensive processes of human-in-the-loop adjudication of observing priorities, reduces operations risk by systematically checking constraints, and maximizes science return by fully evaluating the trade space of observing opportunities to meet MESSENGER science priorities within spacecraft recorder, downlink, scheduling, and orbital-geometry constraints.  相似文献   

8.
Satellite remote sensing technology has contributed to the transformation of multiple earth science domains, putting space observations at the forefront of innovation in earth science. With new satellite missions being launched every year, new types of earth science data are being incorporated into science models and decision-making systems in a broad array of organizations. Policy guidance can influence the degree to which user needs influence mission design and when, and ensure that satellite missions serve both the scientific and user communities without becoming unfocused and overly expensive. By considering the needs of the user community early on in the mission-design process, agencies can ensure that satellites meet the needs of multiple constituencies. This paper describes the mission development process in NASA and ESA and compares and contrasts the successes and challenges faced by these agencies as they try to balance science and applications within their missions.  相似文献   

9.
With the development of several key technologies, nanosatellites are emerging as important vehicles for carrying out technology demonstrations and space science research. Nanosatellites are attractive for several reasons, the most important being that they do not involve the prohibitive costs of a conventional satellite launch. One key enabling technology is in the area of battery technology. In this paper, we focus on the characterization of battery technologies suitable for nanosatellites.Several battery chemistries are examined in order to find a type suitable for typical nanosatellite missions. As a baseline mission, we examine York University's 1U CubeSat mission for its power budget and power requirements. Several types of commercially available batteries are examined for their applicability to CubeSat missions. We also describe the procedures and results from a series of environmental tests for a set of Lithium Polymer batteries from two manufacturers.  相似文献   

10.
Space programs support experimental investigations related to the unique environment of space and to the technological developments from many disciplines of both science and engineering that contribute to space studies. Furthermore, interactions between scientists, engineers and administrators, that are necessary for the success of any science mission in space, promote interdiscipline communication, understanding and interests which extend well beyond a specific mission. NASA-catalyzed collaborations have benefited the spinal cord rehabilitation program at UCLA in fundamental science and in the application of expertise and technologies originally developed for the space program. Examples of these benefits include: (1) better understanding of the role of load in maintaining healthy muscle and motor function, resulting in a spinal cord injury (SCI) rehabilitation program based on muscle/limb loading; (2) investigation of a potentially novel growth factor affected by spaceflight which may help regulate muscle mass; (3) development of implantable sensors, electronics and software to monitor and analyze long-term muscle activity in unrestrained subjects; (4) development of hardware to assist therapies applied to SCI patients; and (5) development of computer models to simulate stepping which will be used to investigate the effects of neurological deficits (muscle weakness or inappropriate activation) and to evaluate therapies to correct these deficiencies.  相似文献   

11.
A new class of distributed space missions is emerging which requires hundreds to thousands of satellites for real-time, distributed, multi-point sensing to accomplish long-awaited remote sensing and science objectives. These missions, stymied by the lack of a low-cost mass-producible solution, can become reality by merging the concepts of distributed satellite systems and terrestrial wireless sensor networks. However, unlike terrestrial sensor nodes, space-based nodes must survive unique environmental hazards while undergoing complex orbital dynamics. A novel sub-kilogram very small satellite design is needed to meet these requirements. Sub-kilogram satellite concepts are developing elsewhere, such as traditional picosatellites and microengineered aerospace systems. Although viable technical solutions, these technologies currently come at a high cost due to their reliance on high-density technology or custom manufacturing processes. While evaluating these technologies, two untapped technology areas became evident that uniquely encompass low cost and mass producibility by leveraging existing commercial production techniques: satellite-on-a-chip (SpaceChip) and satellite-on-a-printed circuit board (PCBSat). This paper focuses on the design, build, and test results of a prototype PCBSat with a prototype unit cost less than $300. The paper concludes with mission applications and future direction.  相似文献   

12.
As well as providing practical information on Earth-besetting problems, space science and exploration are vital tools for capturing the public imagination and encouraging young people's interest in space. The relatively small scale of some scientific instruments also allows mission participation by developing countries. Citing the work of the UN and various NGOs in promoting study and distribution of space science data, the authors recommend that it be given a higher profile and suggest a number of projects -- the Mars drill study in Egypt, refurbishment of a telescope facility in Sri Lanka -- involving developing countries that should be followed up, as well as listing ongoing successful projects. The UN is urged to continue its annual workshops on space science (apparently under threat) and to ensure its inclusion in the forthcoming UNISPACE III Conference.  相似文献   

13.
Globalization is creating an interdependent space-faring world and new opportunities for international partnerships that strengthen space knowledge development and transfer. These opportunities have been codified in the Global Exploration Strategy, which endorses the “inspirational and educational value of space exploration” [1]. Also, during the 2010 Heads of Space Agencies Summit celebrating the International Academy of Astronautics’ (IAA) 50th Anniversary, space-faring nations from across the globe issued a collective call in support of robust international partnerships to expand the frontiers of space exploration and generate knowledge for improving life on Earth [2].Educators play a unique role in this mission, developing strategic partnerships and sharing best educational practices to (1) further global understanding of the benefits of space exploration for life on Earth and (2) prepare the next generation of scientists required for the 21st Century space workforce. Educational Outreach (EO) programs use evidence-based, measurable outcomes strategies and cutting edge information technologies to transfer space-based science, technology, engineering and mathematics (STEM) knowledge to new audiences; create indigenous materials with cultural resonance for emerging space societies; support teacher professional development; and contribute to workforce development initiatives that inspire and prepare new cohorts of students for space exploration careers. The National Space Biomedical Research Institute (NSBRI), the National Aeronautics and Space Administration (NASA) and Morehouse School of Medicine (MSM) have sustained a 13-year space science education partnership dedicated to these objectives.This paper briefly describes the design and achievements of NSBRI's educational programs, with special emphasis on those initiatives' involvement with IAA and the International Astronautical Congress (IAC). The IAA Commission 2 Draft Report, Space for Africa, is discussed as a model for developing sustainable partnerships and indigenous programs that support Africa's steady emergence as a global space-faring force. The IAC will provide timely: 2011 South Africa will provide timely feedback to refine that report's strategies for space life sciences education and public engagement in Africa and around the globe.  相似文献   

14.
《Acta Astronautica》2008,62(11-12):1061-1065
The next generation of Mars exploration robotics will have equipment to acquire subsurface samples, process and refine them, and transfer them to science instruments for observation. In 2003, MD Robotics and NORCAT, under contract with the Canadian Space Agency, designed, developed and tested building block technologies for a sample acquisition, processing and handling system for a future Mars mission. Four key technologies were developed to support this system: drill bit development for varied substrates, sample acquisition mechanisms to acquire cores at depth, material transport technologies to move waste material up the hole, and sample reduction technologies, studying the means to efficiently reduce samples into uniform particle sizes. This paper will discuss the technology development, the driving requirements and the test results.  相似文献   

15.
The next generation of Mars exploration robotics will have equipment to acquire subsurface samples, process and refine them, and transfer them to science instruments for observation. In 2003, MD Robotics and NORCAT, under contract with the Canadian Space Agency, designed, developed and tested building block technologies for a sample acquisition, processing and handling system for a future Mars mission. Four key technologies were developed to support this system: drill bit development for varied substrates, sample acquisition mechanisms to acquire cores at depth, material transport technologies to move waste material up the hole, and sample reduction technologies, studying the means to efficiently reduce samples into uniform particle sizes. This paper will discuss the technology development, the driving requirements and the test results.  相似文献   

16.
在长时间飞行的航天器的设计中,必须考虑其表面和暴露的子系统被陨石雨和沿轨道运动碎片的高速撞击。闪光 X 射线技术是研究这一问题的基本工具之一。在美国销售的闪光 X 射线设备中有近30%是用于空间科学的研究。文章介绍了闪光 X 射线系统的性能及其在空间科学研究中的应用。  相似文献   

17.
《Acta Astronautica》2003,52(2-6):203-209
The spacecraft designed to support the ESA Mars Express mission and its science payloads is customized around an existing avionics well suited to environmental and operational constraints of deep-space interplanetary missions. The reuse of the avionics initially developed for the Rosetta cometary program thanks to an adequate ESA cornerstone program budget paves the way for affordable planetary missions.The costs and schedule benefits inherited from reuse of up-to-date avionics solutions validated in the frame of other programs allows to focus design and development efforts of a new mission over the specific areas which requires customization, such as spacecraft configuration and payload resources. This design approach, combined with the implementation of innovative development and management solutions have enabled to provide the Mars Express mission with an highly capable spacecraft for a remarkably low cost. The different spacecraft subsystems are all based on adequate design solutions. The development plan ensures an exhaustive spacecraft verification in order to perform the mission at minimum risk. New management schemes contribute to maintain the mission within its limited funding.Experience and heritage gained on this program will allow industry to propose to Scientists and Agencies high performance, low-cost solutions for the ambitious Mars Exploration Program of the forthcoming decade.  相似文献   

18.
空间太阳能发电系统及其关键材料   总被引:1,自引:0,他引:1  
考虑到未来世界能源的发展,文章综述了空间太阳能发电系统国内外研究和发展现状,包括空间太阳能发电系统的结构演化以及世界各国相关项目的实施和进展,重点讨论了空间太阳能发电系统相关材料技术的发展。针对目前我国在航天和新材料领域的基础,提出了我国发展空间太阳能发电系统的建议。  相似文献   

19.
Despite a rich legacy of impressive technological accomplishments, the government acquisition of advanced space systems is increasingly synonymous with schedule slips and cost overruns. Program reviews have suggested that investing more in centralized and strategic research and development outside particular programs will reduce technical uncertainties and improve cost and schedule outcomes. This paper suggests roles for a centralized technology office by examining the methods available in the literature for managing portfolios of research projects.  相似文献   

20.
《Acta Astronautica》2001,48(5-12):711-721
Early human missions to the Moon have landed on six different sites on the lunar surface. These have all been in the low-latitude regions of the near side of the Moon. Early missions were designed primarily to assure crew safety rather than for scientific value. While the later missions added increasingly more challenging science, they remained restricted to near-side, low-latitude sites. Since the 1970s, we have learned considerably more about lunar planetology and resources. A return within the next five to ten years can greatly stimulate future human space exploration activities. We can learn much more about the distribution of lunar resources, especially about hydrogen, hydrated minerals, and water ice because they appear to be abundant near the lunar poles. The presence of hydrogen opens the possibility of industrial use of lunar resources to provide fuel for space transportation throughout the solar system.This paper discusses the rationale for near-term return of human crews to the Moon, and the advantages to be gained by selecting the Moon as the next target for human missions beyond low-Earth orbit. It describes a systems architecture for early missions, including transportation and habitation aspects. Specifically, we describe a primary transportation architecture that emphasizes existing Earth-to-orbit transportation systems, using expendable launch vehicles for cargo delivery and the Space Shuttle and its derivatives for human transportation. Transfer nodes should be located at the International Space Station (ISS) and at the Earth-Moon L1 (libration point).Each of the major systems is described, and the requisite technology readiness is assessed. These systems include Earth-to-orbit transportation, lunar transfer, lunar descent and landing, surface habitation and mobility, and return to Earth. With optimum reliance on currently existing space systems and a technology readiness assessment, we estimate the minimum development time required and perform order-of-magnitude cost estimates of a near-term human lunar mission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号