首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lunar base development missions   总被引:1,自引:0,他引:1  
On 20 July 1969, humankind first set foot on our Moon. Since then we have developed the Space Shuttle, explored most of the planets, cooperated in the development of the International Space Station, and expanded our knowledge of the universe through use of systems such as the Hubble Space Telescope and the Mars Pathfinder. After just five human follow-on missions to our Moon, we have returned robotically only twice to orbit, to map the surface and explore for resources.

The indication of the presence of hydrogen concentration at the poles of our Moon found by Lunar Prospector has added a new perspective for groups studying and implementing future lunar missions. Plans for nearterm missions such as the European Space Agency (ESA) “Euromoon 2000”, the Japanese Lunar A and Selene, and the Mitsubishi ”Earthrise 2001” Project, along with follow-on phases to the Lunar Prospector, are the beginning of humankind's return to the Moon. Organizations such as the International Academy of Astronautics have long championed the “Case for an International Lunar Base,” and a vision of a commercially-based lunar program has been outlined by several groups. A Lunar Economic Development Authority (LEDA) promoted by the United Society in Space was promulgated by the filing of articles of incorporation in the state of Colorado on 4 August 1997. This non-profit corporation has as its goal the orderly development of the Moon, through issuance of bonds to international private citizens and business entities who care to invest in its long-term development.

This paper draws from the works of the aforementioned, and specifically from the International Academy of Astronautics Lunar Base Committee, to structure a series of architectures leading toward eventual international commercial colonization of the lunar surface. While the prospect of fully reusable transportation systems utilizing fully developed lunar resources to perpetuate the permanent lunar infrastructure is enticing, this is a goal. We must utilize our current and near-term capabilities to re-initiate human lunar presence, and then build on emerging technologies to strengthen our capabilities. Humankind's return to the Moon is a part of our destiny. We can return in the near future, and then proceed to a commercial, permanent settlement in the 21st century.  相似文献   


2.
Ajey Lele   《Space Policy》2010,26(4):222-228
After a gap of 40 years, the Moon is again the focus of several countries’ space ambitions. Japan, China and India have already launched their first Moon missions and are expected to send humans moonwards within the next 10–15 years. This revival of lunar programmes in the post-cold war era goes beyond symbolism and is also about the race to grab the natural resources of the Moon. Such ambitious missions by these states imply that they intend to change the unipolar world into one with multiple power centres, and would use space technology as one of the components to do so. This paper examines the first phase Moon missions of the Asian states and argues that their overall deep space mission aspirations have strategic ambitions attached.  相似文献   

3.
M Reichert 《Acta Astronautica》2001,49(3-10):495-522
After the Apollo Moon program, the international space station represents a further milestone of humankind in space, International follow-on programs like a manned return to the Moon and a first manned Mars Mission can be considered as the next logical step. More and more attention is also paid to the topic of future space tourism in Earth orbit, which is currently under investigation in the USA, Japan and Europe due to its multibillion dollar market potential and high acceptance in society. The wide variety of experience, gained within the space station program, should be used in order to achieve time and cost savings for future manned programs. Different strategies and roadmaps are investigated for space tourism and human missions to the Moon and Mars, based on a comprehensive systems analysis approach. By using DLR's software tool FAST (Fast Assessment of Space Technologies), different scenarios will be defined, optimised and finally evaluated with respect to mission architecture, required technologies, total costs and program duration. This includes trajectory analysis, spacecraft design on subsystem level, operations and life cycle cost analysis. For space tourism, an expected evolutionary roadmap will be described which is initiated by short suborbital tourism and ends with visionary designs like the Space Hotel Berlin and the Space Hotel Europe concept. Furthermore the potential space tourism market, its economic meaning as well as the expected range of the costs of a space ticket (e.g. $50,000 for a suborbital flight) will be analysed and quantified. For human missions to the Moon and Mars, an international 20 year program for the first decades of the next millennium is proposed, which requires about $2.5 Billion per year for a manned return to the Moon program and about $2.6 Billion per year for the first 3 manned Mars missions. This is about the annual budget, which is currently spend by the USA only for the operations of its Space Shuttle fleet which generally proofs the affordability of such ambitious programs after the build-up of the International Space Station, when corresponding budget might become again available.  相似文献   

4.
John C. Mankins   《Acta Astronautica》2009,65(9-10):1190-1195
The current emphasis in the US and internationally on lunar robotic missions is generally viewed as a precursor to possible future human missions to the Moon. As initially framed, the implementation of high level policies such as the US Vision for Space Exploration (VSE) might have been limited to either human lunar sortie missions, or to the testing at the Moon of concepts-of-operations and systems for eventual human missions to Mars [White House, Vision for Space Exploration, Washington, DC, 14 January, 2004. [1]]. However, recently announced (December 2006) US goals go much further: these plans now place at the center of future US—and perhaps international—human spaceflight activities a long-term commitment to an outpost on the Moon.Based on available documents, a human lunar outpost could be emplaced as early as the 2020–2025 timeframe, and would involve numerous novel systems, new technologies and unique operations requirements. As such, substantial investments in research and development (R&D) will be necessary prior to, during, and following the deployment of such an outpost. It seems possible that such an outpost will be an international endeavor, not just the undertaking of a single country—and the US has actively courted partners in the VSE. However, critical questions remain concerning an international lunar outpost. What might such an outpost accomplish? To what extent will “sustainability” be built into the outpost? And, most importantly, what will be the outpost's life cycle cost (LCC)?This paper will explore these issues with a view toward informing key policy and program decisions that must be made during the next several years. The paper will (1) describe a high-level analytical model of a modest lunar outpost, (2) examine (using this model) the parametric characteristics of the outpost in terms of the three critical questions indicated above, and (3) present rough estimates of the relationships of outpost goals and “sustainability” to LCC. The paper will also consider possible outpost requirements for near-term investments in enabling research in light of experiences in past advanced technology programs.  相似文献   

5.
Engel KA 《Acta Astronautica》2005,57(2-8):277-287
The Space Elevator (SE) concept has begun to receive an increasing amount of attention within the space community over the past couple of years and is no longer widely dismissed as pure science fiction. In light of the renewed interest in a, possibly sustained, human presence on the Moon and the fact that transportation and logistics form the bottleneck of many conceivable lunar missions, it is interesting to investigate what role the SE could eventually play in implementing an efficient Earth to Moon transportation system. The elevator allows vehicles to ascend from Earth and be injected into a trans-lunar trajectory without the use of chemical thrusters, thus eliminating gravity loss, aerodynamic loss and the need of high thrust multistage launch systems. Such a system therefore promises substantial savings of propellant and structural mass and could greatly increase the efficiency of Earth to Moon transportation. This paper analyzes different elevator-based trans-lunar transportation scenarios and characterizes them in terms of a number of benchmark figures. The transportation scenarios include direct elevator-launched trans-lunar trajectories, elevator launched trajectories via L1 and L2, as well as launch from an Earth-based elevator and subsequent rendezvous with lunar elevators placed either on the near or on the far side of the Moon. The benchmark figures by which the different transfer options are characterized and evaluated include release radius (RR), required delta v, transfer times as well as other factors such as accessibility of different lunar latitudes, frequency of launch opportunities and mission complexity. The performances of the different lunar transfer options are compared with each other as well as with the performance of conventional mission concepts, represented by Apollo.  相似文献   

6.
面向载人登月任务需要,针对星历模型下具备自由返回能力的地月转移轨道设计问题进行了研究。在三体模型下对地月三维自由返回轨道进行了求解,得到了地月空间内的自由返回轨道分布情况。在二体模型假设下对近月段的三脉冲变轨进行了求解,给出了变平面机动的计算方法。进一步提出了两轮逐次优化修正策略,分别以高度和再入走廊为主要约束,采用内点法和SQP算法在高精度星历模型下对自由返回轨道初值进行逐次优化修正。之后,采用SQP算法在星历模型下对近月三脉冲变轨进行优化修正,得到了星历模型下的自由返回+近月三脉冲变轨地月转移策略。仿真校验结果表明本文提出的方法能够在给定约束下有效求解星历模型下具备自由返回能力的地月转移轨道,为载人登月任务的转移轨道设计提供参考。  相似文献   

7.
NASA's plans for future human exploration of the Solar System describe only missions to Mars. Before such missions can be initiated, much study remains to be done in technology development, mission operations and human performance. While, for example, technology validation and operational experience could be gained in the context of lunar exploration missions, a NASA lunar program is seen as a competitor to a Mars mission rather than a step towards it. The recently characterized weak stability boundary in the Earth–Moon gravitational field may provide an operational approach to all types of planetary exploration, and infrastructure developed for a gateway to the Solar System may be a programmatic solution for exploration that avoids the fractious bickering between Mars and Moon advocates. This viewpoint proposes utilizing the concept of Greater Earth to educate policy makers, opinion makers and the public about these subtle attributes of our space neighborhood.  相似文献   

8.
The USA has adopted the long-term goal of exploring the space frontier, including establishing human settlements beyond Earth orbit. This article describes four candidate missions for developing pathways into the Solar System which have been identified by NASA's Office of Exploration: human expeditions to Phobos and Mars, a lunar observatory and a lunar outpost to assist Mars explorations. The requirements placed upon near-term programmes by each of these missions are outlined and the elements necessary for a long-term implementation strategy are analysed.  相似文献   

9.
苏/俄交会对接技术研究   总被引:1,自引:1,他引:0  
苏/俄交会对接技术的研发,最初是为20世纪60年代初苏联月球使命服务的,后来主要用于空间站的运输使命。因此,最初的"联盟"飞船逐步演变发展为联盟号载人飞船系列与进步号货运飞船系列。联盟号和进步号飞船应用"指针"或"航向"交会雷达系统,基本采用自动轨道交会方法。对应急运作,联盟号航天员可使用手控器;对于不载人的进步号使命...  相似文献   

10.
Roadmap to a human Mars mission   总被引:1,自引:0,他引:1  
We propose a new roadmap for the preparation of the first human mission to Mars. This proposal is based on the work of ISECG and several recent recommendations on human Mars mission architectures. A table is proposed to compare the possible benefits of different preparatory missions. Particular attention is paid to the possibility of qualifying important systems thanks to a heavy Mars sample return mission. It is shown that this mission is mandatory for the qualification of Mars aerocapture at scale-1, EDL systems at scale 1 and Mars ascent. Moreover, it is a good opportunity to test many other systems, such as the heavy launcher and the transportation systems for the trips beyond LEO. These tests were not mentioned in the last ISECG report. This strategy is facilitated in the case of the simplified Mars mission scenarios that have recently been presented because it is suggested that relatively small vehicles with small crew sizes are used in order to optimize the payload mass fraction of the landing vehicles and to avoid the LEO assembly. An important finding of the study is that a human mission to the surface of the Moon is not required for the qualification of the systems of a human mission to Mars. Since affordability is a key criterion, two important missions are proposed in the roadmap. The first is a heavy Mars sample return mission and the second is a manned mission to a high Earth orbit or eventually to the vicinity of the Moon. It is shown that both missions are complementary and sufficient to qualify all the critical systems of the Mars mission.  相似文献   

11.
针对载人月球极地探测任务,采用一种自由返回轨道与三脉冲机动轨道相结合的地月转移轨道方案。关于自由返回轨道部分的设计,建立了基于近月点伪参数的两段拼接模型,采用一种考虑地球扁率修正的改进多圆锥截线法进行求解,仿真结果显示改进的多圆锥截线法具有更高的求解精度,可为精确设计提供更好的初值;关于三脉冲机动轨道部分的设计,基于混合轨道模型,采用特殊点变轨和Lambert算法相结合的方法进行计算,仿真结果显示该方法能够有效地降低速度增量的消耗。最后,通过大量的仿真计算,对轨道的速度增量特性进行了分析。研究结论可为未来载人月球极地探测地月转移轨道方案的设计提供重要参考。  相似文献   

12.
《Acta Astronautica》2009,64(11-12):1337-1342
With the vast experience gained by Aerospace Community in the last five decades, the natural future course of action will be to expand Space Exploration. Our understanding of Moon is relatively better with a number of unmanned satellite missions carried out by the leading Space Agencies and manned missions to Moon by USA. Also a number of unmanned satellite missions and surface rover missions were carried out to Mars by those Space agencies generating many new details about Mars. While the future exploration efforts by global community will also be centered obviously on Moon and Mars, it is noteworthy that already NASA had declared its plans for establishing a Surface Base on Moon and developing the technical infrastructure required. Surface Bases on Moon and Mars give rise to a number of strategic, technical and ethical issues both in the process of development, and in the process of establishing the bases. The strategic issues related to Moon and Mars Surface Bases will be centered around development of enabling technologies, cost of the missions, and international cooperation. The obvious path for tackling both the technological development and cost issues will be through innovative and new means of international cooperation. International cooperation can take many forms like—all capable players joining a leader, or sharing of tasks at system level, or all players having their independent programmes with agreed common interfaces of the items being taken to and left on the surface of Moon/Mars. Each model has its own unique features. Among the technical issues, the first one is that of the Mission Objectives—why Surface Bases have to be developed and what will be the activity of crew on Surface Bases? Surface Bases have to meet mainly the issues on long term survivability of humans on the Mars/Moon with their specific atmosphere, gravity and surface characteristics. Moon offers excellent advantages for astronomy while posing difficulties with respect to solar power utilization and extreme temperature variations. Hence the technical challenges depend on a number of factors starting from mission requirements. Obviously the most important technical challenge to be addressed will be in the areas of crew safety, crew survivability, adequate provision to overcome contingencies, and in-situ resource utilization. Towards this, new innovations will be developed in areas such as specialized space suits, rovers, power and communication systems, and ascent and descent modules. The biggest ethical issue is whether humankind from Earth is targeting ‘habitation’ or ‘colonization’ of Moon/Mars. The next question will be whether the in-situ resource exploitation will be only for carrying out further missions to other planets from Moon/Mars or for utilization on Earth. The third ethical issue will be the long term impact of pollution on Moon/Mars due to technologies employed for power generation and other logistics on Surfaces. The paper elaborates the views of the authors on the strategic, technical and ethical aspects of establishing Surface Bases and colonies on Moon and Mars. The underlying assumptions and gray areas under each aspect will be explained with the resulting long-term implications.  相似文献   

13.
John M. Sarkissian   《Space Policy》2006,22(2):118-127
On 14 January 2004 President George Bush announced his vision for space exploration, to include a human return to the Moon. He argued that, with a moderate increase in NASA's annual expenditure, such a return was possible. This paper is an exploration of how the President's space initiative can be realised on an international co-operative basis along similar lines to those already existing with the international space station (ISS). By abandoning the concept of a lunar landing as the major goal of a lunar programme, the initiative is made feasible. The three-stage plan here presented meshes with the currently evolving plans for the US space initiative to provide a realistic, affordable and sustainable strategy for manned lunar exploration. It represents a significant opportunity for the USA to unite and lead the world on this grand, civilisation defining adventure.  相似文献   

14.
早期的探月飞行都采用直接由地球飞到月球的地月转移方式,探测器由运载火箭直接发送到地月转移轨道,这样做的好处是飞行时间比较短,只需3至5天的时间。20世纪90年代开始的新一轮探月活动中采用了一种新的飞行方式,探测器飞离地球前,先在绕地球飞行的调相轨道上运行若干圈,这样做的好处有三:一是可以在运载火箭能力不够的情况下,由探测器来补充;二是可以减小转移轨道中途修正的负担;三是可以扩大发射机会窗口。文章以嫦娥一号探测器及美、日的两个月球探测器为例,详细讨论了这种新的飞行方式,同时还对我国后续探月计划的飞行轨道提出了初步建议。  相似文献   

15.
Visions about the establishment of a lunar base and development of the Moon for scientific, technical and commercial ends have been on the political agenda since the beginning of the Space Age. In the past few years a number of spacefaring nations, including the USA, European states through ESA, Japan, India, China and Russia have proposed missions directed at the robotic and human exploration and development of the Moon. This paper argues that an important factor in advancing these missions lies in a partnership between the pubic, governmental sector and the private sector. The paper analyzes the dynamics of this partnership as applied to the case of the US Vision for Space Exploration. The results of the analysis suggest that public–private partnerships directed at lunar development and commerce depend on how government reduces risks for the private sector. The risks identified and discussed herein include political and legal risks, technological risks, and financial and market risks.  相似文献   

16.
When the requisite technology exists, the US political process will inevitably include lunar surface activities as a major space objective. This article examines a manned lunar base in terms of three distinct functions: the scientific investigation of the Moon and its environment; development of the capability to use lunar resources for beneficial purposes throughout the Earth-Moon systems; and conduct of R&D leading to a self-sufficient and self-supporting manned lunar base. Three scenarios are outlined with respect to each possible function.  相似文献   

17.
With growing knowledge of the lunar surface environment from recent robotic missions, further assessment of human lunar infrastructures and operational aspects for surface exploration become possible. This is of particular interest for the integration of advanced mobility assets, where path planning, balanced energy provision and consumption as well as communication coverage grow in importance with the excursion distance. The existing modeling and simulation tools for the lunar surface environment have therefore been revisited and extended to incorporate aspects of mobile exploration. An extended analysis of the lunar topographic models from past and ongoing lunar orbital missions has resulted in the creation of a tool to calculate and visualize slope angles in selected lunar regions. This allows for the identification of traversable terrain with respect to the mobile system capabilities. In a next step, it is combined with the analysis of the solar illumination conditions throughout this terrain to inform system energy budgets in terms of electrical power availability and thermal control requirements. The combination of the traversability analysis together with a time distributed energy budget assessment then allows for a path planning and optimization for long range lunar surface mobility assets, including manned excursions as well as un-crewed relocation activities. The above mentioned tools are used for a conceptual analysis of the international lunar reference architecture, developed in the frame of the International Architecture Working Group (IAWG) of the International Space Exploration Coordination Group (ISECG). Its systems capabilities are evaluated together with the planned surface exploration range and paths in order to analyze feasibility of the architecture and to identify potential areas of optimization with respect to time-based and location-based integration of activities.  相似文献   

18.
In order to meet the growing global requirement for affordable missions beyond Low Earth Orbit, two types of platform are under design at the Surrey Space Centre. The first platform is a derivative of Surrey's UoSAT-12 minisatellite, launched in April 1999 and operating successfully in-orbit. The minisatellite has been modified to accommodate a propulsion system capable of delivering up to 1700 m/s delta-V, enabling it to support a wide range of very low cost missions to LaGrange points, Near-Earth Objects, and the Moon. A mission to the Moon - dubbed “MoonShine” - is proposed as the first demonstration of the modified minisatellite beyond LEO. The second platform - Surrey's Interplanetary Platform - has been designed to support missions with delta-V requirements up to 3200 m/s, making it ideal for low cost missions to Mars and Venus, as well as Near Earth Objects (NEOs) and other interplanetary trajectories. Analysis has proved mission feasibility, identifying key challenges in both missions for developing cost-effective techniques for: spacecraft propulsion; navigation; autonomous operations; and a reliable safe mode strategy. To reduce mission risk, inherently failure resistant lunar and interplanetary trajectories are under study. In order to significantly reduce cost and increase reliability, both platforms can communicate with low-cost ground stations and exploit Surrey's experience in autonomous operations. The lunar minisatellite can provide up to 70 kg payload margin in lunar orbit for a total mission cost US$16–25 M. The interplanetary platform can deliver 20 kg of scientific payload to Mars or Venus orbit for a mission cost US$25–50 M. Together, the platforms will enable regular flight of payloads to the Moon and interplanetary space at unprecedented low cost. This paper outlines key systems engineering issues for the proposed Lunar Minisatellite and interplanetary Platform Missions, and describes the accommodation and performance offered to planetary payloads.  相似文献   

19.
Mendell WW 《Acta Astronautica》2005,57(2-8):676-683
The Vision for Space Exploration invokes activities on the Moon in preparation for exploration of Mars and also directs International Space Station (ISS) research toward the same goal. Lunar missions will emphasize development of capability and concomitant reduction of risk for future exploration of Mars. Earlier papers identified three critical issues related to the so-called NASA Mars Design Reference Mission (MDRM) to be addressed in the lunar context: (a) safety, health, and performance of the human crew; (b) various modalities of mission operations ranging surface activities to logistics, planning, and navigation; and (c) reliability and maintainability of systems in the planetary environment. In simple terms, lunar expeditions build a résumé that demonstrates the ability to design, construct, and operate an enterprise such as the MDRM with an expectation of mission success. We can evolve from Apollo-like missions to ones that resemble the complexity and duration of the MDRM. Investment in lunar resource utilization technologies falls naturally into the Vision. NASA must construct an exit strategy from the Moon in the third decade. With a mandate for continuing exploration, it cannot assume responsibility for long-term operation of lunar assets. Therefore, NASA must enter into a partnership with some other entity--governmental, international, or commercial--that can responsibly carry on lunar development past the exploration phase.  相似文献   

20.
《Acta Astronautica》2010,66(11-12):1689-1697
In late 2006, NASA's Constellation Program sponsored a study to examine the feasibility of sending a piloted Orion spacecraft to a near-Earth object. NEOs are asteroids or comets that have perihelion distances less than or equal to 1.3 astronomical units, and can have orbits that cross that of the Earth. Therefore, the most suitable targets for the Orion Crew Exploration Vehicle (CEV) are those NEOs in heliocentric orbits similar to Earth's (i.e. low inclination and low eccentricity). One of the significant advantages of this type of mission is that it strengthens and validates the foundational infrastructure of the United States Space Exploration Policy and is highly complementary to NASA's planned lunar sortie and outpost missions circa 2020. A human expedition to a NEO would not only underline the broad utility of the Orion CEV and Ares launch systems, but would also be the first human expedition to an interplanetary body beyond the Earth–Moon system. These deep space operations will present unique challenges not present in lunar missions for the onboard crew, spacecraft systems, and mission control team. Executing several piloted NEO missions will enable NASA to gain crucial deep space operational experience, which will be necessary prerequisites for the eventual human missions to Mars.Our NEO team will present and discuss the following:
  • •new mission trajectories and concepts;
  • •operational command and control considerations;
  • •expected science, operational, resource utilization, and impact mitigation returns; and
  • •continued exploration momentum and future Mars exploration benefits.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号