首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Spacelab permits investigation in new seicntific disciplines like material processing, life sciences, chemistry, etc. The large mass and volume capabilities of Spacelab offer better possibilities for some areas of traditional space sciences like infrared astronomy, multi-spectral solar observations and large instruments for astronomical observations.Since free-flyers will require normally a new spacecraft development for each mission, the reusability of space qualified components and experiments will be a significant cost reduction factor over a long period. In the early phase of Spacelab utilisation, however, the scaling factor introduced by Spacelab utilisation, however, the scaling factor introduced by Spacelab results in higher payload development costs than originally appreciated.The costs of Spacelab utilisation are computed and compared with those of conventional free-flying satellites. The mission implementation costs and experiment development costs are shown for both cases. The Spacelab mission implementation costs are subdivided into NASA charges for the Standard Shuttle Mission, NASA charges to fly and operate Spacelab, the European costs of Spacelab payload integration and experiment development costs. In order to evaluate and compare mission implementation costs, the simple parameters are adopted of the cost per kg of experiments and the data collection-transmission capability of Shuttle/Spacelab and ESRO/ESA satellites. The mission implementation costs turn out to be very favourable for Spacelab. The experiment development costs, which are not included in the mission implementation costs, are compared for several free flyers with the corresponding development costs for several experiments of the first Spacelab payload. The comparison shows that the cost per kg of Spacelab experiment development is about five times less than of satellite experiments.  相似文献   

2.
Marmann RA 《Acta Astronautica》1997,40(11):815-820
For more than 15 years, Spacelab, has provided a laboratory in space for an international array of experiments, facilities, and experimenters. In addition to continuing this important work, Spacelab is now serving as a crucial stepping-stone to the improved science, improved operations, and rapid access to space that will characterize International Space Station. In the Space Station era, science operations will depend primarily on distributed/remote operations that will allow investigators to direct science activities from their universities, facilities, or home bases. Spacelab missions are a crucial part of preparing for these activities, having been used to test, prove, and refine remote operations over several missions. The knowledge gained from preparing these Missions is also playing a crucial role in reducing the time required to put an experiment into orbit, from revolutionizing the processes involved to testing the hardware needed for these more advanced operations. This paper discusses the role of the Spacelab program and the NASA Marshall Space Flight Center- (MSFC-) managed missions in developing and refining remote operations, new hardware and facilities for use on Space Station, and procedures that dramatically reduce preparation time for flight.  相似文献   

3.
Based on the results of studies carried out by ESA several possibilities are discussed to achieve mission cost reductions for large Spacelab instrument facilities as compared to their flight on several 7-day duration Spacelab missions. As an example three scientific telescope facilities are selected (LIRTS, EXSPOS, GRIST) which are defined to a Phase A level.Three new mission modes are considered:
• —Shuttle attached Spacelab mission mode with extended flight duration (up to 30 days) for which the application of planned capability extensions and new elements of the STS/Spacelab (e.g. Short Spacelab Pallets, Power Extension Package) are investigated.
• —Shuttle deployed mission mode, for which the telescope, accommodated on a Spacelab pallet, is docked to the Power Module, a new element of the Space Transportation System under study by NASA.
• —Free-flying mission mode, for which Shuttle launched dedicated missions of the facilities are considered, assuming varying degrees of autonomy with respect to supporting services of the Shuttle.
Reduction of costs have been considered on the levels of single mission cost and total programme cost. Fundamentally the charges for the instrument can be reduced by constraining the mass/volume factors with respect to the Shuttle capability. However, the instrument as part of a payload is only viable if an acceptable resource sharing including observation time can be achieved. Any single instrument will require several mission opportunities or one mission which achieves a similar or longer total observation programme.Based on an identification of instrument modifications of the Phase A baseline designs to favour cost reductions and on a derivation of technical requirements, constraints and finally budgetary cost comparisons an attempt is made to assess the advantages and disadvantages of the different mission modes.The favoured option for GRIST is a 2–3 weeks sortie mission followed after refurbishment by a longer Power Module docked mission. For LIRTS and EXSPOS the free-flying pallet modes are very attractive in terms of the longer durations achieved and in terms of cost per unit operating time.  相似文献   

4.
ASSESS II (Airborne Science/Spacelab Experiments System Simulation) was a cooperative NASA-ESA project which consisted of a detailed simulation of Spacelab operations using the NASA Ames Research Center CV-990 aircraft laboratory. The Medical Experiment reported on in this paper was part of the complex payload consisting of 11 different experiments. Its general purpose was to develop a technology, possibly flown on board of Spacelab, and enabling the assessment of workload through evaluating changes of circadian rhythmicity, sleep disturbances and episodical or cumulative stress. As parameters the following variables were measured: Rectal temperature, ECG, sleep-EEG and -EOG, the urinary excretion of hormones and electrolytes. The results revealed evidence that a Spacelab environment, as simulated in ASSESS II, will lead to internal dissociation of circadian rhythms, to sleep disturbances and to highly stressful working conditions. Altogether these effects will impose considerable workload upon Payload Specialists. It is suggested that an intensive pre-mission system simulation will reduce these impairments to a reasonable degree. The bioinstrumentation applied in this experiment proved to be a practical and reliable tool in assessing the objectives of the study.  相似文献   

5.
6.
Within the European space platform program the EURECA is being established as a ground-based platform for short microgravity missions. The development towards a serviceable platform for longer, scientific missions is described. The plan of an advanced space-based platform for increasing payload demands is outlined. The platform design and the adaptation to scientific missions and servicing operations are investigated. The cost-effective utilization of the different platform types using new operational concepts is analyzed in parametric life cycle cost calculations for different payloads and mission scenarios.  相似文献   

7.
In order to meet the growing global requirement for affordable missions beyond Low Earth Orbit, two types of platform are under design at the Surrey Space Centre. The first platform is a derivative of Surrey's UoSAT-12 minisatellite, launched in April 1999 and operating successfully in-orbit. The minisatellite has been modified to accommodate a propulsion system capable of delivering up to 1700 m/s delta-V, enabling it to support a wide range of very low cost missions to LaGrange points, Near-Earth Objects, and the Moon. A mission to the Moon - dubbed “MoonShine” - is proposed as the first demonstration of the modified minisatellite beyond LEO. The second platform - Surrey's Interplanetary Platform - has been designed to support missions with delta-V requirements up to 3200 m/s, making it ideal for low cost missions to Mars and Venus, as well as Near Earth Objects (NEOs) and other interplanetary trajectories. Analysis has proved mission feasibility, identifying key challenges in both missions for developing cost-effective techniques for: spacecraft propulsion; navigation; autonomous operations; and a reliable safe mode strategy. To reduce mission risk, inherently failure resistant lunar and interplanetary trajectories are under study. In order to significantly reduce cost and increase reliability, both platforms can communicate with low-cost ground stations and exploit Surrey's experience in autonomous operations. The lunar minisatellite can provide up to 70 kg payload margin in lunar orbit for a total mission cost US$16–25 M. The interplanetary platform can deliver 20 kg of scientific payload to Mars or Venus orbit for a mission cost US$25–50 M. Together, the platforms will enable regular flight of payloads to the Moon and interplanetary space at unprecedented low cost. This paper outlines key systems engineering issues for the proposed Lunar Minisatellite and interplanetary Platform Missions, and describes the accommodation and performance offered to planetary payloads.  相似文献   

8.
In the past, space life sciences has focused on gaining an understanding of physiological tolerance to spaceflight, but, for the last 10 years, the focus has evolved to include issues relevant to extended duration missions. In the 21st century, NASA's long-term strategy for the exploration of the solar system will combine the assurance of human health and performance for long periods in space with investigations aimed at searching for traces of life on other planets and acquiring fundamental scientific knowledge of life processes. Implementation of this strategy will involve a variety of disciplines including radiation health, life support, human factors, space physiology and countermeasures, medical care, environmental health, and exobiology. It will use both ground-based and flight research opportunities such as those found in current on-going programs, on Spacelab and unmanned biosatellite flights, and during Space Station Freedom missions.  相似文献   

9.
Recent planning for science and exploration missions has emphasized the high interest in the close investigation of small bodies in the Solar System. In particular in-situ observations of asteroids and comets play an important role in this field and will contribute substantially to our understanding of the formation and history of the Solar System.The first dedicated comet Lander is Philae, an element of ESA's Rosetta mission to comet 67/P Churyumov–Gerasimenko. Rosetta was launched in 2004. After more than 7 years of cruise (including three Earth and one Mars swing-by as well as two asteroid flybys) the spacecraft has gone into a deep space hibernation in June 2011. When approaching the target comet in early 2014, Rosetta will be re-activated. The cometary nucleus will be characterized remotely to prepare for Lander delivery, currently foreseen for November 2014.The Rosetta Lander was developed and manufactured, similar to a scientific instrument, by a consortium consisting of international partners. Project management is located at DLR in Cologne/Germany, with co-project managers at CNES (France) and ASI (Italy). The scientific lead is at the Max Planck Institute for Solar System Science (Lindau, Germany) and the Institut d'Astrophysique Spatiale (Paris).Mainly scientific institutes provided the subsystems, instruments and the complete, qualified lander system. Operations are performed in two dedicated centers, the Lander Control Center (LCC) at DLR-MUSC and the Science Operations and Navigation Center (SONC) at CNES. This concept was adopted to reduce overall cost of the project and is foreseen also to be applied for development and operations of future small bodies landers.A mission profiting from experience gained during Philae development and operations is MASCOT, a surface package for the Japanese Hayabusa 2 mission. MASCOT is a small (∼10 kg) mobile device, delivered to the surface of asteroid 1999JU3. There it will operate for about 16 h. During this time a camera, a magnetometer, a thermal monitor and an IR analytical instrument will provide ground truth and thus will even be able to support the selection of possible sampling sites for the main spacecraft.MASCOT is a flexible design that can be adapted to a wide range of missions and possible target bodies. Also the payload is flexible to some extent (with an overall mass in the 3 kg range). For example, the surface package is part of the optional strawman payload for MarcoPolo-R, a European asteroid sample return mission, proposed for ESA Cosmic Vision M-class.  相似文献   

10.
M Reichert 《Acta Astronautica》2001,49(3-10):495-522
After the Apollo Moon program, the international space station represents a further milestone of humankind in space, International follow-on programs like a manned return to the Moon and a first manned Mars Mission can be considered as the next logical step. More and more attention is also paid to the topic of future space tourism in Earth orbit, which is currently under investigation in the USA, Japan and Europe due to its multibillion dollar market potential and high acceptance in society. The wide variety of experience, gained within the space station program, should be used in order to achieve time and cost savings for future manned programs. Different strategies and roadmaps are investigated for space tourism and human missions to the Moon and Mars, based on a comprehensive systems analysis approach. By using DLR's software tool FAST (Fast Assessment of Space Technologies), different scenarios will be defined, optimised and finally evaluated with respect to mission architecture, required technologies, total costs and program duration. This includes trajectory analysis, spacecraft design on subsystem level, operations and life cycle cost analysis. For space tourism, an expected evolutionary roadmap will be described which is initiated by short suborbital tourism and ends with visionary designs like the Space Hotel Berlin and the Space Hotel Europe concept. Furthermore the potential space tourism market, its economic meaning as well as the expected range of the costs of a space ticket (e.g. $50,000 for a suborbital flight) will be analysed and quantified. For human missions to the Moon and Mars, an international 20 year program for the first decades of the next millennium is proposed, which requires about $2.5 Billion per year for a manned return to the Moon program and about $2.6 Billion per year for the first 3 manned Mars missions. This is about the annual budget, which is currently spend by the USA only for the operations of its Space Shuttle fleet which generally proofs the affordability of such ambitious programs after the build-up of the International Space Station, when corresponding budget might become again available.  相似文献   

11.
In the first Spacelab Mission which will take place in Sept. Oct. 1983 a Metric Camera will be flown as part of the Earth observation payload. The camera will be a modified high quality Aerial Survey Camera.The hardware development is finished and the instrument is already integrated into Spacelab.The application of Metric Cameras in Space, an area which is neglected up to now, can effectively contribute to an improved cartographic coverage of the Earth. The Metric Camera Experiment is a first step to fill this gap which can be realized by utilizing the extended capacities of the Space Transportation System.The paper outlines the scientific objectives of the experiment, describes in detail the camera system and deals with the operation and control philosophy during the mission.  相似文献   

12.
Computer graphics is being employed at the NASA Johnson Space Center as a tool to perform rapid, efficient and economical analyses for man-machine integration, flight operations development and systems engineering. The Operator Station Design System (OSDS), a computer-based facility featuring a highly flexible and versatile interactive software package, PLAID, is described. This unique evaluation tool, with its expanding data base of Space Shuttle elements, various payloads, experiments, crew equipment and man models, supports a multitude of technical evaluations, including spacecraft and workstation layout, definition of astronaut visual access, flight techniques development, cargo integration and crew training. As OSDS is being applied to the Space Shuttle, Orbiter payloads (including the European Space Agency's Spacelab) and future space vehicles and stations, astronaut and systems safety are being enhanced. Typical OSDS examples are presented. By performing physical and operational evaluations during early conceptual phases. supporting systems verification for flight readiness, and applying its capabilities to real-time mission support, the OSDS provides the wherewithal to satisfy a growing need of the current and future space programs for efficient, economical analyses.  相似文献   

13.
Future space systems, such as Columbus, the planned European contribution to the International Space Station, offer ample possibilities for microgravity research and application. These new opportunities require adequate user support on ground and novel operational concepts in order to ensure an effective utilization. Extensive experience in microgravity user support has been accumulated at DFVLR during the past Spacelab 1 and D1 missions. Based on this work, a Microgravity User Support Centre (MUSC) has been built and is active for the forthcoming EURECA-A1 and D2 missions, to form an integrated support centre for the disciplines life sciences and material sciences in the Space Station era. The objective of the user support at MUSC is to achieve:
• easy access to space experiments for scientific and commercial users,
• efficient preparation of experiments,
• optimum use of valuable microgravity experimentation time,
• cost reduction by concentration of experience.
This is implemented by embedding the MUSC in an active scientific environment in both disciplines, such that users can share the experience gained by professional personnel. In this way, the Space Station system is operated along the lines established on ground for the utilization of large international research facilities, such as accelerators or astronomical observatories. In addition, concepts are developed to apply advanced telescience principles for Space Station operations.  相似文献   

14.
Miller RH 《Acta Astronautica》1995,36(8-12):581-587
Human productivity during assembly operations in-orbit is dependent on limits set by fatigue, metabolic rates, learning, and assembly techniques. In order to quantify these effects, tests were conducted in the NASA MSFC Neutral Buoyancy Simulator, in the NASA KC-135 in parabolic flight, and in space with the EASE program during the Shuttle Atlantis mission 61-B. A separate program attempted to relate productivity to system costs. Because of the surprisingly high productivity which had been demonstrated in orbit, it was shown that assembly operations would have only a small effect on system costs at the present level of launch costs. The results of these continuing studies have been reported in a recent paper(1). They will be briefly summarized here and the results updated to include additional cost elements and to examine the effects of reductions in transportation costs, resulting from advances in technology and from increased demand, on system costs. It is shown that, as launch costs are reduced, the assembly costs could become an increasingly important component of the total system costs.  相似文献   

15.
Using economic incentives to control costs is a new concept for space missions. The basic tenets of market-based approaches run counter to typical centralized management techniques often utilized for complex space missions. NASA's Cassini mission to Saturn used a market trading system to assist the Science Instrument Manager in guiding the development of the spacecraft's science payload. This system allowed science instrument teams to trade resources among themselves to best manage their resources (mass, power, data rate, and budget). Thus, Cassini Project management was no longer responsible for adjudicating and reallocating resources that result from instrument development problems. Instrument teams were responsible for directly managing their resources and if they ran into a development problem it was their responsibility to resolve their problem by descoping or through the use of a 'resource exchange.' Under the trading system, instrument cost growth was less than 1% and the total payload mass was under its allocation by 7%. This result is in stark contrast to the 50%–100% increases in these resources on past missions.  相似文献   

16.
Skoog AI 《Acta Astronautica》1982,9(12):727-740
The delivery of fully qualified Environmental Control and Life Support System (ECLS) flight hardware for the Spacelab Flight Unit was completed in 1979, and the first Spacelab flight is scheduled for mid 1983.

With Spacelab approaching its operational stage, ESA has initiated the Follow-on Development Programme. The future evolution of Spacelab elements in a continued U.S./European cooperation is obviously linked to the U.S. STS evolution and leads from the sortie-mode improvements (Initial Step) towards pallet systems and module applications in unmanned and manned space platforms (Medium and Far Term Alternatives).

Extensive studies and design work have been accomplished on life support systems for Life Sciences Laboratories (Biorack) in Spacelab (incubators and holding units for low vertebrates).

Future long term missions require the implementation of closed loop life support systems and in order to meet the long range development cycle feasibility studies have been performed. Terrestrial applications of the life support technologies developed for space have been successfully implemented.  相似文献   


17.
18.
S. Parameswaran  H.P. Shenoy   《Acta Astronautica》2009,65(9-10):1330-1335
Geosynchronous space missions of ISRO with wide spectrum of payloads provide vital infrastructure for National Development and economic programs. Space technology had grown at a phenomenal rate and complex systems are already operational. Successful mission operations depend very much on many ground systems and knowledge base of the informed operator. An effective balance is to be maintained while using on-board autonomy and automatic operations from ground. The requirement to protect the payload services has increased since the solar activity is reportedly higher during recent times. The rich experience of Geo-mission operations has helped ISRO in formulating suitable algorithms and successfully implementing them to ensure service protection. The other benefit is operational economy since skilled work force is able to concentrate on health analysis and planning rather than routine operations. In this paper, certain case studies are discussed illustrating different levels of automation in ground operations.  相似文献   

19.
Since the first French flight in space in 1982, the CNES has developed a wide range of instruments, especially in the field of Neurosciences. The design of these instruments has considerably evolved from rather simple equipment up to much more sophisticated tools that are being specially tailored for these missions. Four major phases can be identified: -a simple adaptation of an echographe leading to the first neurosciences experiments (the ARAGATZ'88 mission), -the ILLUSIONS and VIMINAL instruments used during the ANTARES'92 and ALTAIR'93 missions, -the COGNILAB instrument developed for the CASSIOPEE'96 mission, to be re-used in 1997 and in 1999, -a preliminary design of the 1999 mission payload, including virtual reality concepts, in a modular design to adapt to the European COF. Aside from the evolution of scientific requirements, the experience gained during the flights led to progressive improvements in the different technical parts, including visual system, body restraint systems, accessories, such as a force feedback joystick, computer and software, etc. This paper describes the technical evolutions in the CNES Neurosciences program.  相似文献   

20.
《Acta Astronautica》2003,52(2-6):203-209
The spacecraft designed to support the ESA Mars Express mission and its science payloads is customized around an existing avionics well suited to environmental and operational constraints of deep-space interplanetary missions. The reuse of the avionics initially developed for the Rosetta cometary program thanks to an adequate ESA cornerstone program budget paves the way for affordable planetary missions.The costs and schedule benefits inherited from reuse of up-to-date avionics solutions validated in the frame of other programs allows to focus design and development efforts of a new mission over the specific areas which requires customization, such as spacecraft configuration and payload resources. This design approach, combined with the implementation of innovative development and management solutions have enabled to provide the Mars Express mission with an highly capable spacecraft for a remarkably low cost. The different spacecraft subsystems are all based on adequate design solutions. The development plan ensures an exhaustive spacecraft verification in order to perform the mission at minimum risk. New management schemes contribute to maintain the mission within its limited funding.Experience and heritage gained on this program will allow industry to propose to Scientists and Agencies high performance, low-cost solutions for the ambitious Mars Exploration Program of the forthcoming decade.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号