首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
The top priority in America's manned space flight program is the assurance of crew and vehicle safety. This priority gained greater focus during and after the Space Shuttle return-to-flight mission (STS-26). One of the interesting challenges has been to assure crew safety and adequate protection of the Space Shuttle, as a national resource, from increasingly diverse cargoes and operations. The control of hazards associated with the deployment of complex payloads and cargoes has involved many international participants. These challenges are examined in some detail along with examples of how crew safety has evolved in the manned space program and how the international partners have addressed various scenarios involving control and mitigation of potential hazards to crew and vehicle safety.  相似文献   

2.
The planned rate of up to 40 Space Shuttle missions per year from the Kennedy Space Center requires a matching payload processing capability that must be efficient and economical. Five facilities are being converted to handle spacecraft assembly and checkout, two to handle explosives and other dangerous spacecraft components, and one for total payload integration. New handling and transporting equipment is being built, and new procedures established. This paper presents an overview of the processing cycles of the two presently known types of payloads, their integration into Shuttle-ready cargos, and the installation of the cargo into the Space Shuttle Orbiter.  相似文献   

3.
Although NASA's Space Shuttle is largely dedicated in the near term to Space Station assembly, 10–16 day flight opportunities still abound for spacecraft technology demonstration payloads, and experiments for the established earth and space science communities. This paper will present the latest developments of SPACEHAB flight systems in order to accommodate the flight needs of these communities on the Space Shuttle today and the Space Station tomorrow. In particular, some examples of payloads from these disciplines will be introduced together with the accommodation and experiment objectives.  相似文献   

4.
The International Space Station (ISS), as the largest international science and engineering program in history, features unprecedented technical, cost, scheduling, managerial, and international complexity. A number of major milestones have been accomplished to date, including the construction of major elements of flight hardware, the development of operations and sustaining engineering centers, astronaut training, and eight Space Shuttle/Mir docking missions. International partner contributions and levels of participation have been baselined, and negotiations and discussions are nearing completion regarding bartering arrangements for services and new hardware. As ISS is successfully executed, it can pave the way for more inspiring cooperative achievements in the future.  相似文献   

5.
During the next two decades, we will establish the foundation for the 21st century's accomplishments in space. The Space Shuttle vehicle will become the cornerstone for that foundation by providing economical opportunities for space exploration and utilization.Reusability of the Shuttle vehicle is the key to its economy. The major developmental challenges encountered in the Shuttle program are typified by the complexities involved in designing the reusable propulsion and thermal protection subsystems. We successfully met such challenges and are nearing the launch of the first Shuttle orbital flight.Our immediate goal is to enter the Space Shuttle operational phase because only then will we fully understand the unique capabilities of the Shuttle. Concurrent with our effort to begin Shuttle operations are our initial efforts to expand Shuttle capabilities, extending them significantly beyond those of the current baseline system.Shuttle payload capacity and mission-duration capabilities are to increase considerably during the next decade. Just as present Shuttle performance specifications and development timetables were guided by the space program plans and forecasts of the 1960s, so will the development of long-range space programs be determined by our near-future achievements. We anticipate that the Space Shuttle will play a critical role in those achievements.  相似文献   

6.
7.
An essential part of increment preparation for the ISS is the training of the flight crews. Each international partner is responsible for the basic training of its own astronauts, where a basic knowledge is taught on space science and engineering, ISS systems and operations and general astronaut skills like flying, diving, survival, language, etc. The main parts of the ISS crew training are the Advanced Training, e.g., generic ISS operations; nominal and malfunction systems operations and emergencies, and the Increment-Specific Training, i.e., operations and tasks specific to a particular increment. The Advanced and Increment-Specific Training is multilateral training, i.e., each partner is training all ISS astronauts on its contributions to the ISS program. Consequently, ESA is responsible for the Basic Training of its own astronauts and the Advanced and Increment-Specific Training of all ISS crews after Columbus activation on Columbus Systems Operations, Automated Transfer Vehicle (ATV), and ESA payloads.

This paper gives an overview of the ESA ISS Training Program for Columbus Systems Operations and ATV, for which EADS Space Transportation GmbH is the prime contractor. The key training tasks, the training flow and the training facilities are presented.  相似文献   


8.
9.
10.
王磊  满广龙 《航天器工程》2012,21(2):108-113
文章对国内外航天器热控涂层在轨搭载飞行试验进行了调研,综述了利用和平号空间站、"国际空间站"、美国航天飞机、"长期暴露装置"等航天器进行的相关试验工作及主要的研究成果等。在此基础上提出了我国开展热控涂层搭载飞行试验的建议。  相似文献   

11.
This paper examines the debate within the USA over how to meet the perceived competition from the successful European Ariane launcher and the loss of US market share for space launch services that it represented. In particular, it explores the origins of the 1983 Reagan Administration policy to turn over expendable launch vehicle production and operation to private industry. The Administration's other decisions to: (1) use the Space Shuttle to fly all government payloads, and (2) allow NASA to market Space Shuttle services commercially, conflicted with this commercialization policy. These policies effectively caused US industry to delay entry into the international competition for launch services until after the loss of the Space Shuttle Challenger in January 1986.  相似文献   

12.
In the past, one of the major problems in performing scientific investigations in space has been the high cost of developing, integrating, and transporting scientific experiments into space. The limited resources of unmanned spacecraft, coupled with the requirements for completely automated operations, was another factor contributing to the high costs of scientific research in space. In previous space missions after developing, integrating and transporting costly experiments into space and obtaining successful data, the experiment facility and spacecraft have been lost forever, because they could not be returned to earth. The objective of this paper is to present how the utilization of the Spacelab System will result in cost benefits to the scientific community, and significantly reduce the cost of space operations from previous space programs.The following approach was used to quantify the cost benefits of using the Spacelab System to greatly reduce the operational costs of scientific research in space. An analysis was made of the series of activities required to combine individual scientific experiments into an integrated payload that is compatible with the Space Transportation System (STS). These activities, including Shuttle and Spacelab integration, communications and data processing, launch support requirements, and flight operations were analyzed to indicate how this new space system, when compared with previous space systems, will reduce the cost of space research. It will be shown that utilization of the Spacelab modular design, standard payload interfaces, optional Mission Dependent Equipment (MDE), and standard services, such as the Experiment Computer Operating System (ECOS), allow the user many more services than previous programs, at significantly lower costs. In addition, the missions will also be analyzed to relate their cost benefit contributions to space scientific research.The analytical tools that are being developed at MSFC in the form of computer programs that can rapidly analyze experiment to Spacelab interfaces will be discussed to show how these tools allow the Spacelab integrator to economically establish the payload compatibility of a Spacelab mission.The information used in this paper has been assimilated from the actual experience gained in integrating over 50 highly complex, scientific experiments that will fly on the Spacelab first and second missions. In addition, this paper described the work being done at the Marshall Space Flight Center (MSFC) to define the analytical integration tools and techniques required to economically and efficiently integrate a wide variety of Spacelab payloads and missions. The conclusions reached in this study are based on the actual experience gained at MSFC in its roles of Spacelab integration and mission managers for the first three Spacelab missions. The results of this paper will clearly show that the cost benefits of the Spacelab system will greatly reduce the costs and increase the opportunities for scientific investigation from space.  相似文献   

13.
Spaceflight exposes astronaut crews to natural ionizing radiation. To date, exposures in manned spaceflight have been well below the career limits recommended to NASA by the National Council of Radiation Protection and Measurements (NCRP). This will not be the case for long-duration exploratory class missions. Additionally. International Space Station (ISS) crews will receive higher doses than earlier flight crews. Uncertainties in our understanding of long-term bioeffects, as well as updated analyses of the Hiroshima. Nagasaki and Chernobyl tumorigenesis data, have prompted the NCRP to recommend further reductions by 30-50% for career dose limit guidelines. Intelligent spacecraft design and material selection can provide a shielding strategy capable of maintaining crew exposures within recommended guidelines. Current studies on newer radioprotectant compounds may find combinations of agents which further diminish the risk of radiation-induced bioeffects to the crew.  相似文献   

14.
Chipman EG 《Acta Astronautica》1983,10(5-6):251-262
The OSS-1 Payload of nine experiments was carried on the STS-3 Space Shuttle flight in March of 1982. The OSS-1 Payload contained four instruments that evaluated specific aspects of the Orbiter's environment, including the levels of particulate, gaseous and electromagnetic emissions given off by the Orbiter, and the interactions between the Orbiter and the surrounding plasma. In addition to these environmental observations, these instruments performed scientific investigations in astronomy and in space plasma physics, including active experiments in electron beam propagation. Other experiments were in the areas of solar physics, plant growth, micrometeorite studies and the technology of actively controlled heat pipes. We present the initial results from these experiments, with some implications of these results for future operation of space experiments from the Shuttle payload bay. One major result was the unexpected discovery of a faint surface-induced optical glow created near the Shuttle surfaces by impacts of ambient atmospheric atoms and molecules.  相似文献   

15.
长期空间飞行会对航天员的身心健康造成一定的不利影响,开展航天员生命保障的研究是非常必要的。核磁共振技术是疾病检查诊断的重要手段,同样在航天员生命保障医疗中将发挥重要的作用。文章结合国内外相关研究进展以及航天员选拔、训练和航天员医监医保的相关知识,探究了超导核磁共振技术在航天员生命保障中的应用前景。  相似文献   

16.
Kanas N  Ritsher J 《Acta Astronautica》2005,56(9-12):932-936
In isolated and confined environments, two important leadership roles have been identified: the task/instrumental role (which focuses on work goals and operational needs), and the supportive/expressive role (which focuses on morale goals and emotional needs). On the International Space Station, the mission commander should be familiar with both of these aspects of leadership. In previous research involving a 135-day Mir space station simulation in Moscow and a series of on-orbit Mir space station missions during the Shuttle/Mir program, both these leadership roles were studied. In new analyses of the Shuttle/Mir data, we found that for crewmembers, the supportive role of the commander (but not the task role) related positively with crew cohesion. For mission control personnel on the ground, both the task and supportive roles of their leader were related positively to mission control cohesion. The implications of these findings are discussed in terms of leadership on board the International Space Station.  相似文献   

17.
Many of the problems that the Space Shuttle programme has had in meeting its goals of routine and cost-effective access to space can be traced to various characteristics of the decision to develop the Space Shuttle. That decision was made through a process of bureaucratic politics, with little attention given to future users of the Shuttle. The design chosen for development was a poor compromise between demanding Pentagon and NASA requirements and a limited budget.  相似文献   

18.
Market-based systems are those systems in which currency is used to express demand for a limited resource. In these systems, users `own' currency and exchange it for a desired commodity. Though used for thousands of years, market-based applications to space missions are still in their infancy. The first successful application was in 1992 with the Cassini Mission to Saturn. In this case, the sum total of mass and dollars for the science instruments had to fit within the allocated resource envelope. Results from the use of a market-based system show that the entire science payload grew from original estimates by only +1% for cost, and by –7% for mass. The next application was for Space Shuttle Secondary Payloads. In this application, available shuttle lift mass, number of lockers for secondary payloads, and available astronaut time had to be allocated between 5 NASA Users. Experiments showed that a market-based system can reduce the size of the required workforce needed to produce a manifest of the same quality as one produced `by committee.' Finally, a market-based system was experimentally applied to LightSAR science planning, a proposed joint NASA/Commercial RADAR mission. In this application, users were able to produce a conflict-free timeline of events remotely, of high science value, in about half the time required by more traditional methods.  相似文献   

19.
The European Space Agency (ESA) contribution to the International Space Station (ISS) goes much beyond the delivery of hardware like the Columbus Laboratory, its payloads and the Automated Transfer Vehicles. ESA Astronauts will be members of the ISS crew. ESA, according to its commitments as ISS international partner, will be responsible to provide training on its elements and payloads to all ISS crewmembers and medical support for ESA astronauts. The European Astronaut Centre (EAC) in Cologne has developed over more than a decade into the centre of expertise for manned space activities within ESA by contributing to a number of important co-operative spaceflight missions. This role will be significantly extended for ISS manned operations. Apart from its support to ESA astronauts and their onboard operations, EAC will have a key role in training all ISS astronauts on ESA elements and payloads. The medical support of ISS crew, in particular of ESA astronauts has already started. This paper provides an overview on status and further plans in building up this homebase function for ESA astronauts and on the preparation towards Training Readiness for ISS crew training at EAC, Cologne. Copyright 2001 by the European Space Agency. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. Released to IAF/IAA/AIAA to publish in all forms.  相似文献   

20.
Long term continuous operation of the COLUMBUS Orbital Facility (COF) flight- and ground segment requires continuous mission control and operations support capability to ensure proper operation and configuration of the COF systems in support of ongoing science and technology payloads. The ISS logistics scenario will be supported by the Automated Transfer Vehicle (ATV). These operational needs require the built-up of a new ground infrastructure in Europe and USA, enabling an efficient operations for preparation, planning and mission execution. The challenge for the European space community consists in the development and operation of a user friendly operational environment but keeping costs within budgetary constraints. Results of detailed definition studies performed by both agency and industry for the ground infrastructure indicate solutions to those technical and programmatic requirements by using of existing centers and facilities, re-use of C/D phase products (Hardware, Software) and COTS equipment to avoid costly new developments, using engineering expertise of the industrial personnel from flight element phase C/D. The concept for operations execution defines the task sharing between Operations Control Facilities (OCF), Operations Support Facilities and User Operations Sites. Operations support consists of on-line engineering support, off-line engineering support, payload integration, logistics support and crew training support performed by industry. DASA RI has made internal investments in organizational concepts for mission operations as well as in mission technologies and tools based on the standard COLUMBUS Ground Software (CGS) toolset and on knowledge based systems to enable an efficient industrial operations support. These tools are available as prototypes being evaluated in a simulated operational environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号