首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6782篇
  免费   11篇
  国内免费   20篇
航空   3586篇
航天技术   2370篇
综合类   33篇
航天   824篇
  2018年   71篇
  2017年   39篇
  2014年   92篇
  2013年   160篇
  2012年   124篇
  2011年   192篇
  2010年   138篇
  2009年   214篇
  2008年   308篇
  2007年   157篇
  2006年   153篇
  2005年   167篇
  2004年   154篇
  2003年   218篇
  2002年   123篇
  2001年   207篇
  2000年   136篇
  1999年   157篇
  1998年   204篇
  1997年   154篇
  1996年   199篇
  1995年   248篇
  1994年   235篇
  1993年   152篇
  1992年   166篇
  1991年   92篇
  1990年   86篇
  1989年   179篇
  1988年   78篇
  1987年   91篇
  1986年   97篇
  1985年   246篇
  1984年   177篇
  1983年   168篇
  1982年   171篇
  1981年   214篇
  1980年   84篇
  1979年   58篇
  1978年   69篇
  1977年   63篇
  1976年   46篇
  1975年   77篇
  1974年   58篇
  1973年   60篇
  1972年   65篇
  1971年   64篇
  1970年   52篇
  1969年   57篇
  1968年   38篇
  1967年   44篇
排序方式: 共有6813条查询结果,搜索用时 437 毫秒
1.
This work aims to investigate far-UVC light at 222 nm as a new microbial reduction tool for planetary protection purposes which could potentially be integrated into the spacecraft assembly process. The major advantage of far-UVC (222 nm) compared to traditional germicidal UVC (254 nm) is the potential for application throughout the spacecraft assembly process in the presence of humans without adverse health effects due to the limited penetration of far-UVC light into biological materials. Testing the efficacy of 222-nm light at inactivating hardy bacterial cells and spores isolated from spacecraft and associated surfaces is a necessary step to evaluate this technology. We assessed survival of Bacillus pumilus SAFR-032 and Acinetobacter radioresistens 50v1 exposed to 222-nm light on proxy spacecraft surfaces simulated by drying the bacteria on aluminum coupons. The survival fraction of both bacteria followed a single stage decay function up to 60 mJ/cm2, revealing similar susceptibility of both species to 222-nm light, which was independent of the exposure rate. Irradiation with far-UVC light at 222 nm is an effective method to decontaminate the proxy spacecraft materials tested in this study.  相似文献   
2.
For the first time, the spin axis orientation of an inactive box-wing geosynchronous satellite has been estimated from ground-based optical photometric observations of Echostar-2’s specular reflections. Recent photometric light curves obtained of Echostar-2 over four years suggest that unusually bright and brief specular reflections were occurring twice within an observed spin period. These bright and brief specular reflections suggested two satellite surfaces with surface normals separated by approximately 180°. The geometry between the satellite, the Sun, and the observing location at the time of each of the brightest observed reflections, was used to estimate Echostar-2’s equatorial spin axis orientation coordinates. When considering prograde and retrograde rotation, Echostar-2’s spin axis orientation was estimated to have been located within 30° of either equatorial coordinate pole. Echostar-2’s spin axis was observed to have moved approximately 180° in right ascension, within a time span of six months, suggesting a roughly one year spin axis precession period about the satellite’s angular momentum vector.  相似文献   
3.
The main objective of our work was to investigate the impact of rain on wave observations from C-band (~5.3 GHz) synthetic aperture radar (SAR) in tropical cyclones. In this study, 10 Sentinel-1 SAR images were available from the Satellite Hurricane Observation Campaign, which were taken under cyclonic conditions during the 2016 hurricane season. The third-generation wave model, known as Simulating WAves Nearshore (SWAN) (version 41.31), was used to simulate the wave fields corresponding to these Sentinel-1 SAR images. In addition, rainfall data from the Tropical Rainfall Measuring Mission satellite passing over the spatial coverage of the Sentinel-1 SAR images were collected. The simulated results were validated against significant wave heights (SWHs) from the Jason-2 altimeter and European Centre for Medium-Range Weather Forecasts data, revealing a root mean square error (RMSE) of ~0.5 m with a 0.25 scatter index. Winds retrieved from the VH-polarized Sentinel-1 SAR images using the Sentinel-1 Extra Wide-swath Mode Wind Speed Retrieval Model after Noise Removal were taken as prior information for wave retrieval. It was discovered that rain did indeed affect the SAR wave retrieval, as evidenced by the 3.21-m RMSE of SWHs between the SAR images and the SWAN model, which was obtained for the ~1000 match-ups with raindrops. The raindrops dampened the wave retrieval when the rain rate was < ~5 mm/hr; however, they enhanced wave retrieval for higher rain rates. It was also found that the portion of the rain-induced ring wave with a wave number > 0.05 rad/m (~125 m wavelength) was clearly observed in the SAR-derived wave spectra.  相似文献   
4.
The water content of magma oceans is widely accepted as a key factor that determines whether a terrestrial planet is habitable. Water ocean mass is determined as a result not only of water delivery and loss, but also of water partitioning among several reservoirs. Here we review our current understanding of water partitioning among the atmosphere, magma ocean, and solid mantle of accreting planetary embryos and protoplanets just after giant collisions. Magma oceans are readily formed in planetary embryos and protoplanets in their accretion phase. Significant amounts of water are partitioned into magma oceans, provided the planetary building blocks are water-rich enough. Particularly important but still quite uncertain issues are how much water the planetary building blocks contain initially and how water goes out of the solidifying mantle and is finally degassed to the atmosphere. Constraints from both solar-system explorations and exoplanet observations and also from laboratory experiments are needed to resolve these issues.  相似文献   
5.
Pollock  C.J.  C:son-Brandt  P.  Burch  J.L.  Henderson  M.G.  Jahn  J.-M.  McComas  D.J.  Mende  S.B.  Mitchell  D.G.  Reeves  G.D.  Scime  E.E.  Skoug  R.M.  Thomsen  M.  Valek  P. 《Space Science Reviews》2003,109(1-4):155-182
Energetic Neutral Atom (ENA) imaging has contributed substantially to substorm research. This technique has allowed significant advances in areas such as observation and quantification of injected particle drift as a function of energy, observation of dynamics in the tail that are directly related to the effects of imposed (growth phase) and induced (expansion phase) electric fields on the plasma, the prompt extraction of oxygen from the ionosphere during substorms, the relationship between storms and substorms, and the timing of substorm ENA signatures. We present discussion of the advantages and shortcomings of the ENA technique for studying space plasmas. Although the technique is in its infancy, it is yielding results that enrich our understanding of the substorm process and its effects.  相似文献   
6.
普惠公司为JSF研制的F135发动机已完成了系统发展和验证的关键设计评审.今年10月将开始发动机的地面试验。GE和罗-罗公司计划为JSF研制的备选发动机F136将在明年7月在GE公司进行首次试验  相似文献   
7.
Tappin  S.J.  Simnett  G.M.  Lyons  M.A. 《Space Science Reviews》2001,97(1-4):17-20
In a previous paper (Tappin et al., 1999) we used cross-correlation analysis of high-cadence observations with the LASCO coronagraphs to trace the acceleration of the solar wind at low latitudes. In this paper we present a similar analysis carried out over the North pole of the Sun. The observations which were made in March 2000 with the C3 coronagraph show low bulk flow speeds (comparable to or lower than those seen at the equator in early 1998). We observe the acceleration continuing to the edge of the C3 field of view at about 30 R . We also observe, as at low latitude, a high-speed tail but now reaching out well beyond 2000 km s−1. We do not see a clear signature of a fast polar bulk flow. We therefore conclude that at this phase of the solar cycle, any fast bulk flow occupies only a small part of the line of sight and is therefore overwhelmed by the denser slow solar wind in these observations. We also show that the fast component is consistent with observed solar wind speeds at 1 AU. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
8.
9.
The problem of target motion analysis (TMA) has been the subject of an important literature. However, present methods use data estimated by a short time analysis (azimuths, Dopplers, etc.). For far sources, the nonstationarities of the array processing outputs, induced by the sources motion, may be simply modeled. This model leads one to consider directly a spatio-temporal TMA. Then new (spatio-temporal) data can be estimated. These estimates correspond to a long time analysis. Further, note that they are estimated independently of the (classical) bearings. In this general framework, the concept of source trajectory replaces the classical instantaneous bearings. Corresponding TMA algorithms are then studied. Then the study of statistical performance is carefully studied  相似文献   
10.
A new class of techniques for multisensor fusion and target recognition is proposed using sequence comparison by dynamic programming and multiple model estimation. The objective is to fuse information on the kinematic state and “nonkinematic” signature of unclassified targets, assessing the joint likelihood of all observed events for recognition. Relationships are shown to previous efforts in pattern recognition and state estimation. This research applies “classical” speech processing-related and other sequence comparison methods to moving target recognition, extends the efforts of previous researchers through improved fusion with kinematic information, relates the proposed techniques to Bayesian theory, and applies parameter identification methods to target recognition for improved understanding of the subject in general. The proposed techniques are evaluated and compared with existing approaches using the method of generalized ambiguity functions, which lends to a form of Cramer-Rao lower bound for target recognition  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号