首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
航空   1篇
航天技术   3篇
  2021年   1篇
  2011年   1篇
  2010年   1篇
  1981年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
This work aims to investigate far-UVC light at 222 nm as a new microbial reduction tool for planetary protection purposes which could potentially be integrated into the spacecraft assembly process. The major advantage of far-UVC (222 nm) compared to traditional germicidal UVC (254 nm) is the potential for application throughout the spacecraft assembly process in the presence of humans without adverse health effects due to the limited penetration of far-UVC light into biological materials. Testing the efficacy of 222-nm light at inactivating hardy bacterial cells and spores isolated from spacecraft and associated surfaces is a necessary step to evaluate this technology. We assessed survival of Bacillus pumilus SAFR-032 and Acinetobacter radioresistens 50v1 exposed to 222-nm light on proxy spacecraft surfaces simulated by drying the bacteria on aluminum coupons. The survival fraction of both bacteria followed a single stage decay function up to 60 mJ/cm2, revealing similar susceptibility of both species to 222-nm light, which was independent of the exposure rate. Irradiation with far-UVC light at 222 nm is an effective method to decontaminate the proxy spacecraft materials tested in this study.  相似文献   
2.
In its function as an ITRS Combination Centre, DGFI is in charge with the computation of an ITRF2008 solution. The computation methodology of DGFI is based on the combination of datum-free normal equations (weekly or session data sets, respectively) of station positions and Earth orientation parameters (EOP) from the geodetic space techniques DORIS, GPS, SLR and VLBI. In this paper we focus on the DORIS part within the ITRF2008 computations. We present results obtained from the analysis of the DORIS time series for station positions, network translation and scale parameters, as well as for the terrestrial pole coordinates. The submissions to ITRF2008 benefit from improved analysis strategies of the seven contributing IDS analysis centres and from a combination of the weekly solutions of station positions and polar motion. The results show an improvement by a factor of two compared to past DORIS data submitted to ITRF2005, which has been evaluated by investigating the repeatabilities of position time series. The DORIS position time series were analysed w.r.t. discontinuities and other non-linear effects such as seasonal variations. About 40 discontinuities have been identified which have been compared with the results of an earlier study. Within the inter-technique combination we focus on the DORIS contribution to the integration of the different space geodetic observations and on a comparison of the geodetic local ties with the space geodetic solutions. Results are given for the 41 co-location sites between DORIS and GPS.  相似文献   
3.
One of the most attractive scientific issues in the use of GNSS (Global Navigation Satellite System) signals, from a meteorological point of view, is the retrieval of high resolution tropospheric water vapour maps. The real-time (or quasi real-time) knowledge of such distributions could be very useful for several applications, from operative meteorology to atmospheric modelling. Moreover, the exploitation of wet refractivity field reconstruction techniques can be used for atmospheric delay compensation purposes and, as a very promising activity, it could be applied for example to calibrate SAR or Interferometric-SAR (In-SAR) observations for land remote sensing. This is in fact one of the objectives of the European Space Agency project METAWAVE (Mitigation of Electromagnetic Transmission errors induced by Atmospheric Water vapour Effects), in which several techniques are investigated and results were compared to identify a strategy to remove the contribution of water vapour induced propagation delays in In-SAR products. Within this project, the tomographic reconstruction of three dimensional wet refractivity fields from tropospheric delays observed by a local GNSS network (9 dual frequency GPS receivers) deployed over Como area (Italy), during 12–18 October, 2008, was performed. Despite limitations due to the network design, internal consistency tests prove the efficiency of the adopted tomographic approach: the rms of the difference between reconstructed and GNSS observed Zenith Wet Delays (ZWD) are in the order of 4 mm. A good agreement is also observed between our ZWDs and corresponding delays obtained by vertically integrating independent wet refractivity fields, taken by co-located meteorological analysis. Finally, during the observing period, reconstructed vertical wet refractivity profiles evolution reveals water vapour variations induced by simple cloud covering. Even if our main goal was to demonstrate the effectiveness in adopting tomographic reconstruction procedures for the evaluation of propagation delays inside water vapour fields, the actual water vapour vertical variability and its evolution with time is well reproduced, demonstrating also the effectiveness of the inferred 3D wet refractivity fields.  相似文献   
4.
Battistini  P.  Bònoli  F.  Buonanno  R.  Cacciarl  C.  Corsi  C. E.  Fusi Pecci  F. 《Space Science Reviews》1981,30(1-4):81-84
Space Science Reviews -  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号