首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chinese Gaofen-3 (GF-3) synthetic aperture radar (SAR) acquired in wave mode (WV) and quad-polarization stripmap (QPS) mode default operates in quad-polarization (vertical–vertical (VV), vertical-horizontal (VH), horizontal-horizontal (HH) and horizontal-vertical (HV)) modes. To date, more than GF-3 SAR vignettes following about 110 orbits acquired in WV and QPS mode have been recorded during the mission from April 2016 to December 2017. In the vignettes, ocean surface waves signatures, that are wave-look patterns, are visible in cross-polarization (basically VH). These vignettes are collocated with surface sea state parameters simulated from numerical WAVEWATCH-III (WW3) wave model using a 0.1° grid. There are 11,269 matchups available for studying the relation between sea state parameters and SAR-derived parameters in VH-polarization. A well-known empirical CWAVE model, herein renamed as CPCWAVE_GF3, is adopted for sea state parameter retrieval from GF-3 SAR vignettes with the SAR parameters in the cross-polarization channel. The method yielded a significant correlation coefficient (COR) of 0.79 for wave height (SWH) and 0.72 for second-order cross-zero mean wave period (MWP). Validation against 76 moored buoys resulted in a 0.49 m RMSE of SWH with a 0.21 m scatter index (SI) and validation against 71 moored buoys resulted in a 1.01 s RMSE of MWP with a 0.13 s SI. The comparison of SWH with 116 footprints from the altimeter of Jason-2 also shows a 0.46 m RMSE of SWH with a 0.19 m SI. Our work demonstrates the feasibility of wave retrieval from GF-3 SAR using cross-polarization channels parameters.  相似文献   

2.
In recent years, land surface temperature (LST) has become critical in environmental studies and earth science. Remote sensing technology enables spatiotemporal monitoring of this parameter on large scales. This parameter can be estimated by satellite images with at least one thermal band. Sentinel-3 SLSTR data provide LST products with a spatial resolution of 1 km. In this research, direct and indirect validation procedures were employed to evaluate the Sentinel-3 SLSTR LST products over the study area in different seasons from 2018 to 2019. The validation method was based on the absolute (direct) evaluation of this product with field data and comparison (indirect) evaluation with the MODIS LST product and the estimated LST using the non-linear split-window (NSW) algorithm. Also, two emissivity estimation methods, (1) NDVI thresholding method (NDVI-THM) and (2) classification-based emissivity method (CBEM), were used to estimate the LST using the NSW method according to the two thermal bands of Sentinel-3 images. Then, the accuracy of these methods in estimating LST was evaluated using field data and temporal changes of vegetation, which the NDVI-THM method generated better results. For indirect evaluation between the Sentinel-3 LST product, MODIS LST product, and LST estimated using NSW, four filters based on spatial and temporal separates between pairs of pixels and pixel quality were used to ensure the accuracy and consistency of the compared pairs of a pixel. In general, the accuracy results of the LST products of MODIS and Sentinel-3, and LST estimated using NSW showed a similar trend for LST changes during the seasons. With respect to the two absolute and comparative validations for the Sentinel-3 LST products, summer with the highest values of bias (?1.24 K), standard deviation (StDv = 2.66 K), and RMSE (2.43 K), and winter with the lowest ones (bias of 0.14 K, StDv of 1.13 K, and RMSE of 1.12 K) provided the worst and best results for the seasons in the period of 2018–2019, respectively. According to both absolute and comparative evaluation results, the Sentinel-3 SLSTR LST products provided reliable results for all seasons on a large temporal and spatial scale over our studied area.  相似文献   

3.
With the free and full access to images from Sentinel-2 satellite, the interest to use this data for quantitative retrieval of vegetation parameters is ever-increasing. LAI and chlorophyll are two key variables which are desired for studying productivity, nutrient and stress status of vegetation. Studies carried out on croplands using simulated Sentinel-2 MSI and parametric approach have identified vegetation indices (VIs) with high sensitivity to LAI and chlorophyll. To test how Sentinel-2 red-edge based VIs perform for retrieval of LAI and Chlorophyll of tropical mixed forest canopies, this study has been performed. The field measurements of LAI and chlorophyll content were recorded in a total of 28 ESUs (Elementary Sampling Units) in Bhakra range in the Tarai Central Forest Division, Uttarakhand (India). The in-situ measurements were statistically correlated with Sentinel-2VIs and strength of correlation was validated using Predicted Residual Error Sum of Squares (PRESS) statistic. Field LAI corrected for foliage clumpiness effect improved correlation of VIs with LAI. Among all VIs tested, Normalized Difference Index (NDI) offered highest positive correlation (R2 = 0.79, p < 0.05) with LAI while Red-Edge Chlorophyll Index (RECI) (R2 = 0.83, RMSE = 0.24 g/m2, p < 0.05) and Simple Ratio (SR) 740/705 (R2 = 0.79, RMSE = 0.27 g/m2, p < 0.05) were the most closely related to chlorophyll content. VIs with red-edge and NIR combinations offered best results.  相似文献   

4.
Sustainable monitoring and determining the biophysical characteristics of crops is of global importance due to the increase in demand for food. In this context, remote sensing data provide valuable information on crops. This study investigates the relationship between the variables determined from both Synthetic Aperture Radar (SAR) and optical images and crop height. For this purpose, backscatter (σVH, σVV, σVH / σVV) and coherence (?VH, ?VV) of multi-temporal dual-polarized Sentinel-1 and vegetation indices of multi-temporal Sentinel-2 data are analyzed. Two indices, namely, Normalized Difference Vegetation Index (NDVI) and NDVI with the red-edge band (NDVIred), are interpreted to identify the contribution of the red-edge band over the near-infrared band. The Zile District of Tokat province in Turkey where dominantly sunflower cultivation is carried out, was selected as the study area. In the analysis of the data, Simple Linear Regression (SLR), Multiple Linear Regression (MLR), Artificial Neural Network (ANN), EXtreme Gradient Boosting (XGBoost), and Convolutional Neural Network (CNN) were used. In the results of the study, ANN showed the lowest RMSE = 3.083 cm (RMSE%= 11.284) in the stem elongation period. The CNN followed the lowest RMSE for the Inflorescence development and flowering stages 19.223 cm (RMSE%=15.458) and 8.731 cm (RMSE%=5.821), respectively. In the ripening period, XGBoost achieved the lowest RMSE = 8.731 cm (RMSE%=6.091). All the best models in four methods were created using common variables of σVH, σVV, ?VH, ?VV and NDVIred, except ANN which exclude coherence variables. The results concluded that NDVIred contributed more than NDVI which is widely interpreted in previous studies.  相似文献   

5.
We demonstrate in this work how we can take advantage of known unfocused SAR (UF-SAR) retracking methods (e.g. the physical SAMOSA model) for retracking of fully-focused SAR (FF-SAR) waveforms. Our insights are an important step towards consistent observations of sea surface height, significant wave height and backscatter coefficient (wind speed) with both UF-SAR and FF-SAR. This is of particular interest for SAR altimetry in the coastal zone, since coastal clutter may be filtered out more efficiently in the high-resolution FF-SAR waveform data, which has the potential to improve data quality. We implemented a multi-mission FF-SAR altimetry processor for Sentinel-3 (S3) and Sentinel-6 Michael Freilich (S6), using a back-projection algorithm, and analysed ocean waveform statistics compared to multilooked UF-SAR. We find for Sentinel-3 that the averaged power waveforms of UF-SAR and FF-SAR over ocean are virtually identical, while for Sentinel-6 the FF-SAR power waveforms better resemble the UF-SAR zero-Doppler beam. We can explain and model the similarities and differences in the data via theoretical considerations of the waveform integrals. These findings suggest to use the existing UF-SAR SAMOSA model for retracking S3 FF-SAR waveforms but the SAMOSA zero-Doppler beam model for S6 FF-SAR waveforms, instead. Testing the outlined approach over short track segments, we obtain range biases between UF-SAR and FF-SAR lower than 2 mm and significant wave height biases lower than 5 cm.  相似文献   

6.
This paper describes an innovative method for processing nadir altimeter data acquired in Synthetic Aperture Radar (SAR) mode, enhancing the system performances over open ocean. Similarly to the current SAR data processing scheme, the so-called LR-RMC (Low Resolution with Range Migration Correction) method, originally designed by Phalippou and Demeester (2011), includes Doppler beam forming, Doppler shift correction and range correction. In LR-RMC, however, an alternative and less complex averaging (stacking) operation is used so that all the Doppler beams produced in a radar cycle (4 bursts of 64 beams for the open-burst Sentinel-3-mode altimeter) are incoherently combined to form a multi-beam echo. In that manner, contrarily to the narrow-band SAR technique, the LR-RMC processing enlarges the effective footprint to average out the effects of surface waves and particularly those from small sub-mesoscale structures (<1 km) that are known to impact SAR-mode performances. On the other hand, the number of averaged beams is as high as in current SAR-mode processing, thus providing a noise reduction at least equally good. The LR-RMC method has the added benefit of reducing the incoherent integration time with respect to the SAR-mode processing (50 ms compared to 2.5 s) limiting possible surface movement effects. By processing one year of Sentinel-3A SRAL SAR-mode data using the LR-RMC method, it is shown that the swell impact on the SAR altimeter performances is totally removed and that an improvement of 10–50% is obtained in the measurement noise of the sea surface height and significant wave height with respect to SAR mode. Additionally, observational capabilities over the middle scales are enhanced potentially allowing the ocean mesoscale features to be retrieved and observations assimilated more usefully in ocean models.  相似文献   

7.
In this study, we evaluate Sentinel-3A satellite synthetic aperture radar (SAR) altimeter observations along the Northwest Atlantic coast, spanning the Nova Scotian Shelf, Gulf of Maine, and Mid-Atlantic Bight. Comparisons are made of altimeter sea surface height (SSH) measurements from three different altimeter data processing approaches: fully-focused synthetic aperture radar (FFSAR), un-focused SAR (UFSAR), and conventional low-resolution mode (LRM). Results show that fully-focused SAR data always outperform LRM data and are comparable or slightly better than the nominal un-focused SAR product. SSH measurement noise in both SAR-mode datasets is significantly reduced compared to LRM. FFSAR SSH 20-Hz noise levels, derived from 80-Hz FFSAR data, are lower than 20-Hz UFSAR SSH with 25% noise reduction offshore of 5 km, and 55–70% within 5 km of the coast. The offshore noise improvement is most likely due to the higher native along-track data posting rate (80 Hz for FFSAR, and 20 Hz for UFSAR), while the large coastal improvement indicates an apparent FFSAR data processing advantage approaching the coastlines. FFSAR-derived geostrophic ocean current estimates exhibit the lowest bias and noise when compared to in situ buoy-measured currents. Assessment at short spatial scales of 5–20 km reveals that Sentinel-3A SAR data provide sharper and more realistic measurement of small-scale sea surface slopes associated with expected nearshore coastal currents and small-scale gyre features that are much less well resolved in conventional altimetric LRM data.  相似文献   

8.
Being the very first SAR mode altimeter tandem phase, the Sentinel-3 A/B tandem phase has provided an unprecedented opportunity to better characterize the sensitivity of SAR altimetry retrievals to high-frequency processes, such as long ocean waves. In this paper, we show that for some sea-state conditions, that are still to be precisely characterized, long ocean waves are responsible for high-frequency (spatial and temporal) coherent Sea Level Anomaly (SLA) signals. It is found that the peak wavelength corresponds to the dominant swell wavelength. Furthermore, the short time lag between S3-A and S3-B acquisitions allows performing cross-spectral analyses that reveal phase shifts consistent with waves travelling according to the wave dispersion relation. It is also demonstrated that the classical 20 Hz sampling frequency is insufficient to properly sample most swell-induced SLA signals and that aliasing can generate errors over the entire frequency spectrum, including at long wavelengths. These results advocate for the use of azimuth oversampling (40 Hz or 80 Hz). Low-pass filtering should be applied prior to any down-sampling to 20 Hz, in order to prevent long-wavelength errors induced by spectral leakage.  相似文献   

9.
An important characteristic of rainfall levels at a particular place is the statistical distribution of rainfall rate. In this paper, 5-min integration time rainfall data for the Northcentral region of Nigeria was obtained from the Tropospheric Data Acquisition Network (TRODAN), Anyigba, Nigeria. Also, 1-min integration time rainfall was measured at Minna, Nigeria. In order to obtain the optimal rain rate model suitable for this region, two globally recognised rain rate models were critically evaluated and compared with the 1-min measurements. These are the ITU-R P.837-7 and Lavergnat-Gole (L-G) models. The results obtained showed that the ITU-R P.837-7 and L-G models respectively underestimated the measured rain rate by 7.3 mm/h and 9 mm/h at time percentage exceedance of 0.1%, while they underestimated the measured rain rate by 23.4 mm/h and 13 mm/h respectively at 0.01%. At 0.001%, the measured rain rate was overestimated by the ITU-R P.837-7 and L-G models by 27.4 mm/h and 3 mm/h respectively. Further performance evaluation of the predefined models was carried out using different error metrics such as sum of absolute error (SAE), mean absolute error (MAE), root mean square error (RMSE), standard deviation (STDEV) and Spearman’s rank correlation. The results obtained adjudged the Lavergnat-Gole model as the best rain rate prediction model for this region.  相似文献   

10.
The current paper introduces a new multilayer perceptron (MLP) and support vector machine (SVM) based approach to improve daily rainfall estimation from the Meteosat Second Generation (MSG) data. In this study, the precipitation is first detected and classified into convective and stratiform rain by two MLP models, and then four multi-class SVM algorithms were used for daily rainfall estimation. Relevant spectral and textural input features of the developed algorithms were derived from the spectral MSG SEVIRI radiometer channels. The models were trained using radar rainfall data set colected over north Algeria. Validation of the proposed daily rainfall estimation technique was performed by rain gauge network data set recorded over north Algeria. Thus, several statistical scores were calculated, such as correlation coefficient (r), root mean square error (RMSE), mean error (Bias), and mean absolute error (MAE). The findings given by: (r = 0.97, bias = 0.31 mm, RMSE = 2.20 mm and MAE = 1.07 mm), showed a quite satisfactory relationship between the estimation and the respective observed daily precipitation. Moreover, the comparison of the results with those of two advanced techniques based on random forests (RF) and weighted ‘k’ nearest neighbor (WkNN) showed higher accuracy obtained by the proposed model.  相似文献   

11.
Global Navigation Satellite System Interferometric Reflectometry (GNSS-IR) technology provides a new means of snow depth detection. Multi-satellite and multi-Signal-to-Noise Ratio (SNR) provide more data for daily high-precision snow depth retrieval, but also face the problem of data fusion and effective utilization. Therefore, this study proposes a robust estimation algorithm based on multi-satellite and multi-SNR fusion applied to the observations of a GNSS station in Alaska. This study uses four solutions (Savg, Smed, SRE_avg and SRE_med) to carry out multi-system fusion snow depth inversion and precision comparison research. The Savg has more obvious disadvantages, which is not suitable for snow depth assessment. The SRE_avg and SRE_med have better snow depth retrieval effects in the snowy periods. The correlation coefficient (R), root mean square error (RMSE) and mean error (ME) of the calculated snow depth using the robust estimation algorithm with respect to the nearest in-situ measurements reached 0.759, 3.7 cm and ?1.4 cm, respectively. Compared with the Smed, the R is increased by 2.0 %, the RMSE corresponds to an improvement of 2.6 %. Moreover, the ME of the snow depth retrievals, as an indicator of the measurement bias, has significantly decreased by 6.7 %. The result also shows that the snow depth inversion by the robust estimation algorithm is more consistent with the in-situ measurements, further extending and advancing the optimal algorithm for snow depth retrieval.  相似文献   

12.
Large-scale land creation projects involving the cutting of mountains to infill gullies for construction have been carried out in Lanzhou New District (LZND). However, there is an urgent need for comprehensive and detailed research on the spatiotemporal evolution of ground deformation in LZND. Based on Sentinel-1A SAR data, combined with the urban geological background, the ground deformation in LZND from 2017 to 2019 was analysed. Two independent, multi-temporal techniques, persistent scatterers interferometry (PS-InSAR) and the small baseline subset (SBAS-InSAR), were used to calculate the deformation time series, and the results were cross-verified. The time series-monitoring results of the SBAS and PS calculations exhibited strong consistency in LZND and verified the high reliability of the experimental results. The results showed the whole surface of the LZND from March 2017 to October 2019 maintained stability, and the deformation rate was primarily in the range of ?10 to 10 mm/year. However, ground deformation in the Xicha area was evident. The maximum annual deformation rates monitored by SBAS-InSAR and PS-InSAR were ?52.48 mm/year and ?56.35 mm/year, respectively. The most typical deformation areas include the built-up area and the land creation area. The surface subsidence area was concentrated in the filling area. The ground deformation range of LZND kept expanding and accelerating from 2017 to 2019. Land creation, urban construction, geology and precipitation were the primary factors contributing to local severe ground deformation. The results of this study provide reference for the regional urban planning in LZND.  相似文献   

13.
针对现有红外和合成孔径雷达(Synthetic Aperture Radar,SAR)图像的融合算法融合质量差、边缘轮廓不清晰、效率低下、可视性差,目标检测效率低等问题,提出一种基于非下采样轮廓波变换的融合算法。首先采用非下采样轮廓波变换对预处理的红外和SAR图像进行分解,获得各自低频和带通方向图像,接着根据红外和SAR图像的特征选取其含重要目标信息的频带进行低频图像和带通方向图像融合。为了检验本文所提出算法性能的优越性,采用两组红外和SAR图像进行融合实验,与其他图像融合算法进行对比,并对融合图像进行目标检测,证明了该融合算法能有效提高多源图像目标检测率。  相似文献   

14.
Despite spiral eddies were first seen on the sea surface more than 40 years ago, there is still a lot of uncertainty concerning these eddies. The present paper is aimed to provide the comprehensive results on the occurrence and statistics of small-scale eddies in the three inner seas (the Baltic, Black and Caspian) using satellite synthetic aperture radar (SAR) images. The dataset used includes over 2000 medium resolution Envisat ASAR and ERS-2 SAR images obtained in 2009–2010 in the different parts of the seas mentioned. As a result of the analysis performed ∼14,000 vortical structures were detected. 71% of them were visualized due to surfactant films (“black” eddies), while 29% due to wave/current interactions (“white” eddies). Practically all the eddies detected were cyclonically rotating. Their diameter was within 1–20 km. Characteristic size of the “black” eddies in all the basins was discovered to be less than that of the “white” eddies. Characteristic eddy size for the Baltic, Black and Caspian seas proved to be strictly proportional to the values of the baroclinic Rossby radius of deformation typical for these basins. The “black” eddies did not demonstrate a significant connection with the basin- and meso-scale surface circulation of the seas. Most of the “white” eddies detected were attributed to the zones with the most intense drift currents, i.e. those along the western boundaries and (in the Baltic Sea only) in the elongated parts of the basin.  相似文献   

15.
Aerosol optical depth (AOD) is one of the most important indicators of atmospheric pollution. It can be retrieved from satellite imagery using several established methods, such as the dark dense vegetation method and the deep blue algorithm. All of these methods require estimation of surface reflectance prior to retrieval, and are applicable to a certain pre-designated type of surface cover. Such limitations can be overcome by using a synergetic method of retrieval proposed in this study. This innovative method is based on the fact that the ratio K of surface reflectance at different angles/geometries is independent of wavelength as reported by Flowerdew and Haigh (1995). An atmospheric radiative transfer model was then established and resolved with the assistance of the ratio K obtained from two Moderate Resolution Imaging Spectroradiometer (MODIS) spectral bands acquired from the twin satellites of Terra and Aqua whose overpass is separated by three hours. This synergetic method of retrieval was tested with 20 pairs of MODIS images. The retrieved AOD was validated against the ground observed AOD at the Taihu station of the AErosol RObotic NETwork (AERONET). It is found that they are correlated with the observations at a coefficient of 0.828 at 0.47 μm and 0.921 at 0.66 μm wavelengths. The retrieved AOD has a mean relative error of 25.47% at 0.47 μm and 24.3% at 0.66 μm. Of the 20 samples, 15 and 17 fall within two standard error of the line based observed AOD data on the ground at the 0.47 μm and 0.66 μm, respectively. These results indicate that this synergetic method can be used to reliably retrieve AOD from the twin satellites MODIS images, namely Terra and Aqua. It is not necessary to determine surface reflectance first.  相似文献   

16.
This paper presents an improved new method with differential evolution and the cubic spline approach is proposed to retrieve sea level height based on GNSS SNR observations from a single geodetic receiver. Considering the B-spline function is unstable at the beginning or end, and the feature that B-spline functions do not pass through nodes may introduce errors. Thus, the cubic spline is applied to the retrieval process and accounts for a continuous and smooth in sea level retrieval time series. Besides, the biases caused by tropospheric delay and dynamic sea level are considered and corrected. Testing data from two stations with different tidal range and the final solution agrees well with measurements from co-located tide gauges, reaching the RMSE of 3.67 cm at Friday Harbor, Washington, and 1.36 cm at Onsala, Sweden. Comparison of the nonlinear least squares, this method leads to a clear increase in precision of the sea level retrievals within 50%. Additionally, referring to the result of Purnell et al. (2020) and the IAG inter-comparison campaign, the results of this paper show more potential.  相似文献   

17.
High resolution airborne magnetic data acquired between 2005 and 2010 were used to determine depth to shallow and deep magnetic sources in some parts of Southeastern Nigeria. Various depth estimation methods such as standard Euler deconvolution (SED), source parameter imaging (SPI), spectral depth analysis (SDA) and two dimensional (2-D) forward modeling were applied. Results obtained from SED, SPI and models of profiles 1 and 2 indicate that the Abakaliki Anticlinorium (AA) and Ikom-Mamfe Rift (IMR) regions are dominated by short wavelength magnetic anomalies caused by extensive tectonic events. The SED map showed depth to shallow and deep magnetic sources ranging from ~ 16.6 to ~ 338.3 m and ~ 394.3 to ~ 5748.1 m respectively. Likewise, depth estimates from the SPI map varies from ~ 147.1 to ~ 554.2 m (shallow magnetic sources) and ~ 644.2 to ~ 6141.6 m (deep magnetic sources). The result obtained from SDA revealed depths to deep magnetic basement in the range of ~ 769 to ~ 6666 m with an average of ~ 3449 m. Also, it showed that depth to shallow magnetic sources vary between ~ 119 and ~ 434 m with mean of ~ 269 m. The 2-D forward modelling showed maximum depth values of ~ 4700, ~4600 and ~ 6500 m in the models of profiles 1, 2 and 3 within the Anambra Basin (AB), Afikpo Syncline (AS) and Calabar Flank (CF) respectively. Generally, from all the various methods applied the results indicate that AB, AS and CF are dominated by long wavelength anomalies. The 2-D models indicated that the basement framework is undulant. Also, depth estimates involving the various methods used in this study correlate strongly with each other in the AB, AS and CF geological regions.  相似文献   

18.
Lake water height is a key variable in water cycle and climate change studies, which is achievable using satellite altimetry constellation. A method based on data processing of altimetry from several satellites has been developed to interpolate mean lake surface (MLS) over a set of 22 big lakes distributed on the Earth. It has been applied on nadir radar altimeters in Low Resolution Mode (LRM: Jason-3, Saral/AltiKa, CryoSat-2) in Synthetic Aperture Radar (SAR) mode (Sentinel-3A), and in SAR interferometric (SARin) mode (CryoSat-2), and on laser altimetry (ICESat). Validation of the method has been performed using a set of kinematic GPS height profiles from 18 field campaigns over the lake Issykkul, by comparison of altimetry’s height at crossover points for the other lakes and using the laser altimetry on ICESat-2 mission. The precision reached ranges from 3 to 7 cm RMS (Root Mean Square) depending on the lakes. Currently, lake water level inferred from satellite altimetry is provided with respect to an ellipsoid. Ellipsoidal heights are converted into orthométric heights using geoid models interpolated along the satellite tracks. These global geoid models were inferred from geodetic satellite missions coupled with absolute and regional anomaly gravity data sets spread over the Earth. However, the spatial resolution of the current geoid models does not allow capturing short wavelength undulations that may reach decimeters in mountaineering regions or for rift lakes (Baikal, Issykkul, Malawi, Tanganika). We interpolate in this work the geoid height anomalies with three recent geoid models, the EGM2008, XGM2016 and EIGEN-6C4d, and compare them with the Mean Surface of 22 lakes calculated using satellite altimetry. Assuming that MLS mimics the local undulations of the geoid, our study shows that over a large set of lakes (in East Africa, Andean mountain and Central Asia), short wavelength undulations of the geoid in poorly sampled areas can be derived using satellite altimetry. The models used in this study present very similar geographical patterns when compared to MLS. The precision of the models largely depends on the location of the lakes and is about 18 cm, in average over the Earth. MLS can serve as a validation dataset for any future geoid model. It will also be useful for validation of the future mission SWOT (Surface Water and Ocean Topography) which will measure and map water heights over the lakes with a high horizontal resolution of 250 by 250 m.  相似文献   

19.
We present results of wind measurements near the mesopause carried out with meteor radars (MRs) at Collm (51°N, 13°E), Obninsk (55°N, 37°E), Kazan (56°N, 49°E), Angarsk (52°N, 104°E) and Anadyr (65°N, 178°E) from October 1, 2017 till March 31, 2018. The Collm and Kazan MRs are SKiYMET radars with vertical transmission and radio echo height finding, while the other radars operate with horizontal transmission and without height finding. We paid particular attention to the meridional wind variability with periods of 4–6 days and 9–11 days. The waves with these periods are seen as spots of the wave activity in the wavelet spectra and include oscillations with different periods and different discrete zonal wavenumbers. These wave packets successively propagate as a group of waves from one site to another one in such a way that they are observed at one site and almost disappear at the previous one. The 4–6 wave group includes planetary-scale oscillations (individual spectral components) which have eastward phase velocities and mostly zonal wavenumbers 2 and 3, and the vertical wavelength exceeds 70 km at middle latitudes. The source of the oscillations is the polar jet instability. The wave group itself propagates westward, and the amplitudes of wind oscillations are approximately 5–6 m/s as obtained from the wind data averaged over the meteor zone. The 9–11 day wave set propagates westward as a group and mainly consists of spectral components which have westward phase velocity and zonal wavenumber 1. Amplitudes of these wind perturbations strongly vary from station to station and can reach, approximately, 8 m/s. The vertical wavenumber is 0.014 km−1 as taken from the Kazan and 0.05 km−1 according to the Collm data. We obtained a global view on the waves by using the AURA MLS geopotential data. We found a good correspondence between wave features obtained from the MR wind measurements and the MLS data. To our knowledge, such a wave propagation of planetary wave in the mesosphere/lower thermosphere (MLT) region has so far not obtained much attention.  相似文献   

20.
The overlapping-frequency signals from different GNSS constellations are interoperable and can be integrated as one constellation in multi-GNSS positioning when inter-system bias (ISB) is properly disposed. The look-up table method for ISB calibration can enhance the model strength, maximize the number of integer-estimable ambiguities, and thus is preferred. However, the characteristics and magnitudes of the receiver code ISB and phase fractional ISB (F-ISB) are not well known and the wrong values of the biases can seriously degrade the positioning results. In this contribution, we first estimate the between-receiver code ISB and phase F-ISB of hundreds of the baselines up to around 25km in the European Permanent GNSS Network (EPN) and the Multi-GNSS Experiment (MGEX) for the overlapping frequencies L1-E1 (L1), L5-E5a (L5) and E5b-B2b (L7). The data collected from 1st January 2016 to 1st January 2019. Second, the receiver-type and firmware-version combinations for the receivers of Trimble, Leica, Javad, Septentrio and NovAtel are carefully classified. Results show that the Septentrio receivers have consistent code and phase ISB values for the three overlapping frequencies i.e. only one value for each frequency and no receivers are different. The Leica, Trimble and Javad receivers have two or more ISB values for at least one of the three frequencies. A few receivers with biases to the groups are also found and listed. Third, the code ISB and phase F-ISB of the groups are adjusted by the least-squares method. The root mean square errors (RMSE) of the least square adjustment are 0.240 m, 0.250 m and 0.200 m for code of L1, L5 and L7 frequencies, respectively, and are 0.0009 m, 0.0015 m and 0.0031 m for phase of L1, L5 and L7 frequencies, respectively. Finally, the effects of code ISB errors on code positing are investigated with the zero-baseline MAT1_MATZ. The distance root mean square error (DRMS) of L1-E1 code positioning can be reduced by 48.2% with 5 GPS and Galileo satellites and the DRMS degrades quickly when the code ISB error is larger.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号