首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
An important characteristic of rainfall levels at a particular place is the statistical distribution of rainfall rate. In this paper, 5-min integration time rainfall data for the Northcentral region of Nigeria was obtained from the Tropospheric Data Acquisition Network (TRODAN), Anyigba, Nigeria. Also, 1-min integration time rainfall was measured at Minna, Nigeria. In order to obtain the optimal rain rate model suitable for this region, two globally recognised rain rate models were critically evaluated and compared with the 1-min measurements. These are the ITU-R P.837-7 and Lavergnat-Gole (L-G) models. The results obtained showed that the ITU-R P.837-7 and L-G models respectively underestimated the measured rain rate by 7.3 mm/h and 9 mm/h at time percentage exceedance of 0.1%, while they underestimated the measured rain rate by 23.4 mm/h and 13 mm/h respectively at 0.01%. At 0.001%, the measured rain rate was overestimated by the ITU-R P.837-7 and L-G models by 27.4 mm/h and 3 mm/h respectively. Further performance evaluation of the predefined models was carried out using different error metrics such as sum of absolute error (SAE), mean absolute error (MAE), root mean square error (RMSE), standard deviation (STDEV) and Spearman’s rank correlation. The results obtained adjudged the Lavergnat-Gole model as the best rain rate prediction model for this region.  相似文献   

2.
In the present paper, an artificial neural network (ANN) based technique has been developed to estimate instantaneous rainfall by using brightness temperature from the IR sensors of SEVIRI radiometer, onboard Meteosat Second Generation (MSG) satellite. The study is carried out over north of Algeria. For estimation of rainfall, weight matrices of two ANNs namely MLP1 and MLP2 are developed. MLP1 is to identify raining or non-raining pixels. When rainy pixels are identified, then for those pixels, instantaneous rainfall is estimated by using MLP2. For identification of raining and non raining pixels, 7 input parameters from the IR sensors are utilized. Corresponding data of raining/non-raining pixels are taken from radar. For instantaneous rainfall estimation, 14 input parameters are utilized, where 7 parameters are information about raining pixels and 7 parameters are related with cloud features. The results obtained show the neural network performs reasonably well.  相似文献   

3.
By using a Doppler Weather Radar (DWR) at Shriharikota (13.66°N & 80.23°E), an Artificial Neural Network (ANN) based technique is proposed to improve the accuracy of rain intensity estimation. Three spectral moments of a Doppler spectra are utilized as an input data to an ANN. Rain intensity, as measured by the tipping bucket rain gauges around the DWR station, are considered as a target values for the given inputs. Rain intensity as estimated by the developed ANN model is validated by the rain gauges measurements. With the help of a developed technique, reasonable improvement in the estimation of rain intensity is observed. By using the developed technique, root mean square error and bias are reduced in the range of 34–18% and 17–3% respectively, compared to ZR approach.  相似文献   

4.
Multi-sensor precipitation datasets including two products from the Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) and estimates from Climate Prediction Center Morphing Technique (CMORPH) product were quantitatively evaluated to study the monsoon variability over Pakistan. Several statistical and graphical techniques are applied to illustrate the nonconformity of the three satellite products from the gauge observations. During the monsoon season (JAS), the three satellite precipitation products captures the intense precipitation well, all showing high correlation for high rain rates (>30 mm/day). The spatial and temporal satellite rainfall error variability shows a significant geo-topography dependent distribution, as all the three products overestimate over mountain ranges in the north and coastal region in the south parts of Indus basin. The TMPA-RT product tends to overestimate light rain rates (approximately 100%) and the bias is low for high rain rates (about ±20%). In general, daily comparisons from 2005 to 2010 show the best agreement between the TMPA-V7 research product and gauge observations with correlation coefficient values ranging from moderate (0.4) to high (0.8) over the spatial domain of Pakistan. The seasonal variation of rainfall frequency has large biases (100–140%) over high latitudes (36N) with complex terrain for daily, monsoon, and pre-monsoon comparisons. Relatively low uncertainties and errors (Bias ±25% and MAE 1–10 mm) were associated with the TMPA-RT product during the monsoon-dominated region (32–35N), thus demonstrating their potential use for developing an operational hydrological application of the satellite-based near real-time products in Pakistan for flood monitoring.  相似文献   

5.
The main objective of our work was to investigate the impact of rain on wave observations from C-band (~5.3 GHz) synthetic aperture radar (SAR) in tropical cyclones. In this study, 10 Sentinel-1 SAR images were available from the Satellite Hurricane Observation Campaign, which were taken under cyclonic conditions during the 2016 hurricane season. The third-generation wave model, known as Simulating WAves Nearshore (SWAN) (version 41.31), was used to simulate the wave fields corresponding to these Sentinel-1 SAR images. In addition, rainfall data from the Tropical Rainfall Measuring Mission satellite passing over the spatial coverage of the Sentinel-1 SAR images were collected. The simulated results were validated against significant wave heights (SWHs) from the Jason-2 altimeter and European Centre for Medium-Range Weather Forecasts data, revealing a root mean square error (RMSE) of ~0.5 m with a 0.25 scatter index. Winds retrieved from the VH-polarized Sentinel-1 SAR images using the Sentinel-1 Extra Wide-swath Mode Wind Speed Retrieval Model after Noise Removal were taken as prior information for wave retrieval. It was discovered that rain did indeed affect the SAR wave retrieval, as evidenced by the 3.21-m RMSE of SWHs between the SAR images and the SWAN model, which was obtained for the ~1000 match-ups with raindrops. The raindrops dampened the wave retrieval when the rain rate was < ~5 mm/hr; however, they enhanced wave retrieval for higher rain rates. It was also found that the portion of the rain-induced ring wave with a wave number > 0.05 rad/m (~125 m wavelength) was clearly observed in the SAR-derived wave spectra.  相似文献   

6.
The ultimate objective of this paper is the estimation of rainfall over an area in Algeria using data from the SEVIRI radiometer (Spinning Enhanced Visible and Infrared Imager). To achieve this aim, we use a new Convective/Stratiform Rain Area Delineation Technique (CS-RADT). The satellite rainfall retrieval technique is based on various spectral parameters of SEVIRI that express microphysical and optical cloud properties. It uses a multispectral thresholding technique to distinguish between stratiform and convective clouds. This technique (CS-RADT) is applied to the complex situation of the Mediterranean climate of this region. The tests have been conducted during the rainy seasons of 2006/2007 and 2010/2011 where stratiform and convective precipitation is recorded. The developed scheme (CS-RADT) is calibrated by instantaneous meteorological radar data to determine thresholds, and then rain rates are assigned to each cloud type by using radar and rain gauge data. These calibration data are collocated with SEVIRI data in time and space.  相似文献   

7.
The microstructure of rain has been studied with observations using a vertical looking Micro Rain Radar (MRR) at Ahmedabad (23.06°N, 72.62°E), a tropical location in the Indian region. The rain height, derived from the bright band signature of melting layer of radar reflectivity profile, is found to be variable between the heights 4600 m and 5200 m. The change in the nature of rain, classified on the basis of radar reflectivity, is also observed through the MRR. It has been found that there are three types of rain, namely, convective, mixed and stratiform rain, prevailing with different vertical rain microstructures, such as, Drop Size Distribution (DSD), mean drop size, rain rate, liquid water content and average fall speed of the drops at different heights. It is observed that the vertical DSD profile is more inhomogeneous for mixed and stratiform type rain than for convective type rain. It is also found that the large number of drops of size <0.5 mm is present in convective rain whereas in stratiform rain, drops concentration is appreciable up to 1 mm. A comparison of measurements taken by ground based Disdrometer and that from the 200 m level obtained from MRR shows good agreement for rain rate and DSD at smaller rain rate values. The results may be useful for understanding rain structures over this region.  相似文献   

8.
The performance of the existing rain attenuation models in tropical zones is still a debated issue due to the lack of measurements reported from these areas of the world to develop and validate prediction models. A three-year (2003–2005) campaign of rainfall rate and rain attenuation measurements was conducted on a satellite beacon link located in a tropical region of Thailand. The cumulative distributions of rain attenuation derived from the measured data are presented and compared with those obtained with existing prediction models.  相似文献   

9.
The large-scale atmospheric-oceanic phenomena are among the main effective factors in the droughts in the Middle East, especially in Iran. Since these effects are usually delayed, their relevant signals can be useful for predicting droughts. As a result, the provision of a precise prediction of these signals can be efficient in increasing the drought prediction prospect. The current study predicts 8 cases of the most effective oceanic signals on the droughts which have been investigated in Iran. To do so, the problem-solving method with the time series prediction approach is based on the two model types intelligence-based (including multilayer perceptron [MLP] and support vector machine [SVM]) and stochastic (including Autoregressive Integrated Moving Average [ARIMA]) has been used. The model's input for each index included the time lags of the same index itself, which was determined by the autocorrelation function. Based on the evaluation criteria, the results were indicative of the weak predictability of the North Atlantic Oscillation (NAO) and Arctic Oscillation (AO), while the Extreme Eastern Tropical Pacific sea surface temperature (Niño [1 + 2]), East Central Tropical Pacific sea surface temperature (Niño [3 + 4]), and Oceanic Niño Index (ONI) were predicted with very good accuracy, and there is a high overlap between their predictions and observations (95.9 % < R2 < 99.3 %). In the extreme events also, the rate of normalized forecasting error for Niño (1 + 2), Niño (3 + 4), and ONI were in the medium (20–30 %), good (10–20 %), and excellent (0–10 %) ranges, respectively. The comparison between the models also indicates a partial superiority of the ARIMA stochastic model over the SVM and MLP models. The overall results of the study are indicative of the applicability of the predictions of the three mentioned indices as the inputs to increase precipitation and drought forecasting prospects in Iran (as well as all regions affected by them); which have the research value for further studies in terms of drought forecasting.  相似文献   

10.
The present study emphasize the development of a region specific rain retrieval algorithm by taking into accounts the cloud features. Brightness temperatures (Tbs) from various TRMM Microwave Imager (TMI) channels are calibrated with near surface rain intensity as observed from the TRMM – Precipitation Radar. It shows that TbR relations during exclusive-Mesoscale Convective System (MCS) events have greater dynamical range compared to combined events of non-MCS and MCS. Increased dynamical range of TbR relations for exclusive-MCS events have led to the development of an Artificial Neural Network (ANN) based regional algorithm for rain intensity estimation. By using the exclusive MCSs algorithm, reasonably good improvement in the accuracy of rain intensity estimation is observed. A case study of a comparison of rain intensity estimation by the exclusive-MCS regional algorithm and the global TRMM 2A12 rain product with a Doppler Weather Radar shows significant improvement in rain intensity estimation by the developed regional algorithm.  相似文献   

11.
Present study focuses on the estimation of rainfall over Indian land and oceanic regions from the Special Sensor Microwave/Imager (SSM/I) on the Defense Meteorological Satellite Program (DMSP) F-13. Based on the measurements at 19.35, 22.235 and 85.5 GHz channels of SSM/I Satellite, scattering index (SI) has been developed for the Indian land and oceanic regions separately. These scattering indices were co-located against rainfall from Precipitation Radar (PR) onboard Tropical Rainfall Measuring Mission (TRMM) to develop a new regional relationship between the SI and the rain rate for the Indian land and oceanic regions. A non-linear fit between the rain rate and the SI is established for rain measurement. In order to have confidence in our method, we have also estimated rainfall using the global rainfall and scattering index relationship developed by Ferraro and Marks [Ferraro, R.R., Marks, G.F. The development of SSM/I rain rate retrieval algorithms using ground based radar measurements. J. Atmos. Ocean. Technol. 12, 755–770, 1995]. The validation with the rain-gauge shows that the present scheme is able to retrieve rainfall with better accuracy than that of Ferraro and Marks (1995). Further intercomparison with TRMM-2A12 and validation with rain-gauges rainfall showed that the present algorithm is able to retrieve the rainfall with reasonably good accuracy.  相似文献   

12.
The GOES Precipitation Index (GPI) technique (Arkin, 1979) for rainfall estimation has been in operation for the last three decades. However, its applications are limited to the larger temporal and spatial scales. The present study focuses on the augmentation on GPI technique by incorporating a moisture factor for the environmental correction developed by Vicente et al. (1998). It consists of two steps; in the first step the GPI technique is applied to the Kalpana-IR data for rainfall estimation over the Indian land and oceanic region and in the second step an environmental moisture correction factor is applied to the GPI-based rainfall to estimate the final rainfall. Detailed validation with rain gauges and comparison with Tropical Rainfall Measuring Mission (TRMM) merged data product (3B42) are performed and it is found that the present technique is able to estimate the rainfall with better accuracy than the GPI technique over higher temporal and spatial domains for many operational applications in and around the Indian regions using Indian geostationary satellite data. Further comparison with the Doppler Weather Radar shows that the present technique is able to retrieve the rainfall with reasonably good accuracy.  相似文献   

13.
In this paper, an improved Kalpana-1 infrared (IR) based rainfall estimation algorithm, specific to Indian summer monsoon region is presented. This algorithm comprises of two parts: (i) development of Kalpana-1 IR based rainfall estimation algorithm with improvement for orographic warm rain underestimation generally suffered by IR based rainfall estimation methods and (ii) cooling index to take care of the growth and decay of clouds and thereby improving the precipitation estimation.  相似文献   

14.
The main objective of this study was to produce flood susceptibility maps for Tajan watershed, Sari, Iran using three machine learning (ML) models including Self-Organization Map (SOM), Radial Basis Function Neural Network (RBFNN), and Multi-layers Perceptron (MLP). To reach such a goal, different physical-geographical factors (criteria) were integrated and mapped. 212 flood inventory map was randomly divided into training and testing datasets, where 148 flood locations (70%) were used for training and the remaining 64 locations (30%) were employed for testing. Model validation was performed using several statistical indices and the area under the curve (AUC). The results of the correlation matrix showed, three factors slope (0.277), distance from river (0.263), and altitude (0.223) were the most important factors affecting flood. The accuracy evaluation of the flood susceptibility maps through the AUC method and K-index shows that in the validation phase RBFNN (AUC = 0.90) outperform the MLP (AUC = 0.839) and SOM (AUC = 0.882) models. The highest percentage flood susceptibility of the area in MLP, SOM and RBFNN models is related to moderate (28.7%), very low (40%) and low (37%), respectively. Also, the validation results of the models using the Relative Flood Density (RFD) approach showed that very high class had the highest RFD value.  相似文献   

15.
The 0 °C isotherm height is an important parameter for prediction of rain attenuation of microwave and millimeter wave for Earth-space communication. The variations of 0 °C isotherm heights for two monsoon seasons have been studied based on an analysis of radiosonde over three stations. The exceedence probability statistics of rain height are compared between the two seasons. The results on the 0 °C isotherm height can be utilized for the estimation of attenuation of microwave and millimeter wave due to rain over Earth-space paths. Attenuations of radio wave due to rain at frequencies above 10 GHz and above have also been estimated using the 0 °C isotherm height so derived.  相似文献   

16.
The Crustal Movement Observation Network of China (CMONOC) is one of the major scientific infrastructures, mainly using Global Positioning System (GPS) measurements, to monitor crustal deformation in the Chinese mainland. In this paper, decade-long coordinate time series of 26 continuous GPS sites of CMONOC are analyzed for their noise content using maximum likelihood estimation (MLE). We study the noise properties of continuous GPS time series of CMONOC for the unfiltered, filtered solutions and also the common mode signals in terms of power law plus white noise model. In the spatial filtering, we remove for every time series a common mode error that was estimated from a modified stacking of position residuals from other sites within ∼1000 km of the selected site. We find that the common mode signal in our network has a combination of spatially correlated flicker noise and a common white noise with large spatial extent. We demonstrate that for the unfiltered solutions of CMONOC continuous GPS sites the main colored noise is a flicker process, with a mean spectral index of ∼1. For the filtered solutions, the main colored noise is a general power law process, indicating that a major number of the filtered regional solutions have a combination of noise sources or local effects. The velocity uncertainties from CMONOC continuous GPS coordinate time series may be underestimated by factors of 8–16 if a pure white noise model is assumed. In addition, using a white plus flicker noise model, the median values of velocity errors for the unfiltered solutions are 0.16 (north), 0.17 (east) and 0.58 (vertical) mm/yr, and the median values for the filtered solutions are 0.09 (north), 0.10 (east) and 0.40 (vertical) mm/yr.  相似文献   

17.
Global Navigation Satellite System Interferometric Reflectometry (GNSS-IR) technology provides a new means of snow depth detection. Multi-satellite and multi-Signal-to-Noise Ratio (SNR) provide more data for daily high-precision snow depth retrieval, but also face the problem of data fusion and effective utilization. Therefore, this study proposes a robust estimation algorithm based on multi-satellite and multi-SNR fusion applied to the observations of a GNSS station in Alaska. This study uses four solutions (Savg, Smed, SRE_avg and SRE_med) to carry out multi-system fusion snow depth inversion and precision comparison research. The Savg has more obvious disadvantages, which is not suitable for snow depth assessment. The SRE_avg and SRE_med have better snow depth retrieval effects in the snowy periods. The correlation coefficient (R), root mean square error (RMSE) and mean error (ME) of the calculated snow depth using the robust estimation algorithm with respect to the nearest in-situ measurements reached 0.759, 3.7 cm and ?1.4 cm, respectively. Compared with the Smed, the R is increased by 2.0 %, the RMSE corresponds to an improvement of 2.6 %. Moreover, the ME of the snow depth retrievals, as an indicator of the measurement bias, has significantly decreased by 6.7 %. The result also shows that the snow depth inversion by the robust estimation algorithm is more consistent with the in-situ measurements, further extending and advancing the optimal algorithm for snow depth retrieval.  相似文献   

18.
Single-frequency precise point positioning (SF-PPP) has attracted increasing attention due to its high precision and cost effectiveness. With various strategies to handle the dominant error, i.e., ionosphere delay, the ionosphere-float (IF), ionosphere-free-half (IFH), ionosphere-corrected (IC), and ionosphere-weighted (IW) SF-PPP models are certain to possess different characteristics and performance levels. This study is dedicated to assessing and comparing the four models from model characteristics, positioning performance, and atmosphere delay retrieval. The model comparison shows that IC and IW models are full-rank while IF and IFH models have a rank deficiency of size one that will result in biased estimations, which means the better solvability of IC and IW models. The experiments are carried out based on the 7-day Global Positioning System (GPS) observations collected at 57 global Multi-GNSS Experiment (MGEX) stations and Global Ionosphere Map (GIM) products. The results indicate that the IW model can accelerate SF-PPP convergence and achieve higher positioning accuracy compared to the other three SF-PPP models, especially in kinematic mode. With convergence criteria of 0.25 m in horizontal and 0.5 m in vertical, the east/north/up convergence times of IW model are 0.5/15.0/25.0 min and 0.5/16.0/36.5 min for static and kinematic modes, respectively. The IW model is able to achieve an instantaneous positioning accuracy of 0.28/0.35/0.75 m. In addition, a real kinematic test also demonstrates the best positioning solutions of IW model. Regarding troposphere delay retrieval, the IF, IFH, and IW models obtain a comparable daily accuracy of 3.0 cm on average, while the IC model achieves the worst accuracy of 8.0 cm. For precise ionosphere delay estimation, IW model only needs an average initialization time of 34.3 min, but a longer initialization time of 51.6 min is required for IF model. The daily precision of ionosphere delay estimation for IW model can reach up to 10.8 cm. At the present accuracy of GIM products, it is suggested that the IW model should be adopted for SF-PPP first due to its superior performance in positioning and atmosphere delay retrieval.  相似文献   

19.
The objective of this study is to investigate cloud attenuation at 30 GHz frequency using ground-based microwave radiometric observations at a tropical location, Kolkata. At higher frequencies and lower elevation angles, cloud attenuation is of major concern at a tropical location. The location experiences high value of liquid water path (LWP), which is responsible for cloud attenuation, during the Indian summer monsoon (ISM) and pre-monsoon season. Significant amount of cloud attenuation has been observed during monsoon season at 30 GHz. Two years observations of exceedance probability of cloud attenuation and worst month statistics are presented. The variation of cloud attenuation with frequencies for different elevation angles has also been investigated. The seasonal and diurnal patterns of cloud attenuation are examined. Cloud attenuation, inferred from radiometric measurements before rain commencement, has been compared to rain attenuation at Ku-band. Exceedance probabilities of cloud and rain attenuation have been compared.  相似文献   

20.
Rain drop size distribution (DSD) was measured at four places in Southern India {Thiruvananthapuram, Kochi, Munnar and Sriharikota (SHAR)} using a Joss–Waldvogel (JW) impact type disdrometer. The data for each minute were corrected for dead time errors and rain rate was computed from the corrected data. The data for a whole month were then sorted according to rain rate (R) into several classes ranging from 0.1 to >100 mm/h. The average DSD in each class was computed, and the lognormal distribution function was fitted to the average. In all the cases, the function fitted the data very well. The fit parameters were found to have dependence on rain rate. The total number of drops (NT), the geometric mean diameter (Dg) and the standard geometric deviation (σ) were also computed from the fit parameters. The standard geometric deviation (σ) was found to be more or less constant with rain rate at all the sites and in all months. The other two parameters (NT and Dg) were found to vary exponentially with rain rate except in Munnar, a high altitude station. At Thiruvananthapuram, in most of the months, NT increased exponentially with rain rate up to some value of R, which was different in different months, and then remained more or less constant or decrease slightly. In all cases, the variation of NT and Dg was such that NTDg3 increased linearly with rain rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号