首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The separation of rain types in convective and stratiform regimes has long been a goal in microwave remote sensing of precipitation research. In this essence, a dual polarized radar based indexing scheme that provides information on convective and stratiform (C/S) rain regimes has been presented in correspondence with advanced microwave scanning radiometer – earth observing system (AMSR-E) GSFC profiling algorithm estimate of convective rain percentage. The dual polarized radar based C/S indexing scheme first retrieves the normalized gamma drop size distribution parameters, median volume drop diameter (D0) and concentration parameter (Nw), from dual polarized radar measurements ZH and ZDR, representing reflectivity and differential reflectivity respectively, by means of the genetic programming approach. Next, the C/S rain index is calculated based on the formulation of an empirical relation in NwD0 domain. The scheme has been inspected and applied on measurements from the S-band Chilbolton dual polarized radar. A considerable number of “coincident” cases from the radar and the AMSR-E observations are investigated. It has been revealed that the dual polarized radar based C/S rain indexing is in a similar pattern with the AMSR-E GSFC profiling algorithm estimate of convective rain percentage. Generally, as C/S rain index value increases, which signifies a stratiform to convective trend, the AMSR-E convective rain percentage also increases.  相似文献   

2.
In the present paper, an artificial neural network (ANN) based technique has been developed to estimate instantaneous rainfall by using brightness temperature from the IR sensors of SEVIRI radiometer, onboard Meteosat Second Generation (MSG) satellite. The study is carried out over north of Algeria. For estimation of rainfall, weight matrices of two ANNs namely MLP1 and MLP2 are developed. MLP1 is to identify raining or non-raining pixels. When rainy pixels are identified, then for those pixels, instantaneous rainfall is estimated by using MLP2. For identification of raining and non raining pixels, 7 input parameters from the IR sensors are utilized. Corresponding data of raining/non-raining pixels are taken from radar. For instantaneous rainfall estimation, 14 input parameters are utilized, where 7 parameters are information about raining pixels and 7 parameters are related with cloud features. The results obtained show the neural network performs reasonably well.  相似文献   

3.
The current paper introduces a new multilayer perceptron (MLP) and support vector machine (SVM) based approach to improve daily rainfall estimation from the Meteosat Second Generation (MSG) data. In this study, the precipitation is first detected and classified into convective and stratiform rain by two MLP models, and then four multi-class SVM algorithms were used for daily rainfall estimation. Relevant spectral and textural input features of the developed algorithms were derived from the spectral MSG SEVIRI radiometer channels. The models were trained using radar rainfall data set colected over north Algeria. Validation of the proposed daily rainfall estimation technique was performed by rain gauge network data set recorded over north Algeria. Thus, several statistical scores were calculated, such as correlation coefficient (r), root mean square error (RMSE), mean error (Bias), and mean absolute error (MAE). The findings given by: (r = 0.97, bias = 0.31 mm, RMSE = 2.20 mm and MAE = 1.07 mm), showed a quite satisfactory relationship between the estimation and the respective observed daily precipitation. Moreover, the comparison of the results with those of two advanced techniques based on random forests (RF) and weighted ‘k’ nearest neighbor (WkNN) showed higher accuracy obtained by the proposed model.  相似文献   

4.
The microstructure of rain has been studied with observations using a vertical looking Micro Rain Radar (MRR) at Ahmedabad (23.06°N, 72.62°E), a tropical location in the Indian region. The rain height, derived from the bright band signature of melting layer of radar reflectivity profile, is found to be variable between the heights 4600 m and 5200 m. The change in the nature of rain, classified on the basis of radar reflectivity, is also observed through the MRR. It has been found that there are three types of rain, namely, convective, mixed and stratiform rain, prevailing with different vertical rain microstructures, such as, Drop Size Distribution (DSD), mean drop size, rain rate, liquid water content and average fall speed of the drops at different heights. It is observed that the vertical DSD profile is more inhomogeneous for mixed and stratiform type rain than for convective type rain. It is also found that the large number of drops of size <0.5 mm is present in convective rain whereas in stratiform rain, drops concentration is appreciable up to 1 mm. A comparison of measurements taken by ground based Disdrometer and that from the 200 m level obtained from MRR shows good agreement for rain rate and DSD at smaller rain rate values. The results may be useful for understanding rain structures over this region.  相似文献   

5.
Present study focuses on the estimation of rainfall over Indian land and oceanic regions from the Special Sensor Microwave/Imager (SSM/I) on the Defense Meteorological Satellite Program (DMSP) F-13. Based on the measurements at 19.35, 22.235 and 85.5 GHz channels of SSM/I Satellite, scattering index (SI) has been developed for the Indian land and oceanic regions separately. These scattering indices were co-located against rainfall from Precipitation Radar (PR) onboard Tropical Rainfall Measuring Mission (TRMM) to develop a new regional relationship between the SI and the rain rate for the Indian land and oceanic regions. A non-linear fit between the rain rate and the SI is established for rain measurement. In order to have confidence in our method, we have also estimated rainfall using the global rainfall and scattering index relationship developed by Ferraro and Marks [Ferraro, R.R., Marks, G.F. The development of SSM/I rain rate retrieval algorithms using ground based radar measurements. J. Atmos. Ocean. Technol. 12, 755–770, 1995]. The validation with the rain-gauge shows that the present scheme is able to retrieve rainfall with better accuracy than that of Ferraro and Marks (1995). Further intercomparison with TRMM-2A12 and validation with rain-gauges rainfall showed that the present algorithm is able to retrieve the rainfall with reasonably good accuracy.  相似文献   

6.
The GOES Precipitation Index (GPI) technique (Arkin, 1979) for rainfall estimation has been in operation for the last three decades. However, its applications are limited to the larger temporal and spatial scales. The present study focuses on the augmentation on GPI technique by incorporating a moisture factor for the environmental correction developed by Vicente et al. (1998). It consists of two steps; in the first step the GPI technique is applied to the Kalpana-IR data for rainfall estimation over the Indian land and oceanic region and in the second step an environmental moisture correction factor is applied to the GPI-based rainfall to estimate the final rainfall. Detailed validation with rain gauges and comparison with Tropical Rainfall Measuring Mission (TRMM) merged data product (3B42) are performed and it is found that the present technique is able to estimate the rainfall with better accuracy than the GPI technique over higher temporal and spatial domains for many operational applications in and around the Indian regions using Indian geostationary satellite data. Further comparison with the Doppler Weather Radar shows that the present technique is able to retrieve the rainfall with reasonably good accuracy.  相似文献   

7.
Because space-borne radiometers do not measure the Earth’s outgoing fluxes directly, angular distribution models (ADMs) are required to relate actual radiance measurement to flux at given solar angle, satellite-viewing geometries, surface, and atmospheric conditions. The conversion of one footprint broad-band radiance into the corresponding flux requires therefore one to first characterize each footprint in terms of surface type and cloud cover properties to properly select the adequate ADM.

A snow (and sea-ice) retrieval technique based on spectral measurements from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) on board Meteosat 8 is presented. It has been developed to improve the scene identification and thus the ADM selection in the near-real time processing of the Geostationary Earth Radiation Budget (GERB) data at the Royal Meteorological Institute of Belgium. The improvement in the GERB short wave flux estimations over snow covered scene types resulting from angular conversion using dedicated snow ADMs (e.g., empirical snow ADMs and/or pre-computed theoretical snow ADM) instead of empirical snow-free ADMs is discussed.  相似文献   


8.
An important characteristic of rainfall levels at a particular place is the statistical distribution of rainfall rate. In this paper, 5-min integration time rainfall data for the Northcentral region of Nigeria was obtained from the Tropospheric Data Acquisition Network (TRODAN), Anyigba, Nigeria. Also, 1-min integration time rainfall was measured at Minna, Nigeria. In order to obtain the optimal rain rate model suitable for this region, two globally recognised rain rate models were critically evaluated and compared with the 1-min measurements. These are the ITU-R P.837-7 and Lavergnat-Gole (L-G) models. The results obtained showed that the ITU-R P.837-7 and L-G models respectively underestimated the measured rain rate by 7.3 mm/h and 9 mm/h at time percentage exceedance of 0.1%, while they underestimated the measured rain rate by 23.4 mm/h and 13 mm/h respectively at 0.01%. At 0.001%, the measured rain rate was overestimated by the ITU-R P.837-7 and L-G models by 27.4 mm/h and 3 mm/h respectively. Further performance evaluation of the predefined models was carried out using different error metrics such as sum of absolute error (SAE), mean absolute error (MAE), root mean square error (RMSE), standard deviation (STDEV) and Spearman’s rank correlation. The results obtained adjudged the Lavergnat-Gole model as the best rain rate prediction model for this region.  相似文献   

9.
The objective of this study is to investigate cloud attenuation at 30 GHz frequency using ground-based microwave radiometric observations at a tropical location, Kolkata. At higher frequencies and lower elevation angles, cloud attenuation is of major concern at a tropical location. The location experiences high value of liquid water path (LWP), which is responsible for cloud attenuation, during the Indian summer monsoon (ISM) and pre-monsoon season. Significant amount of cloud attenuation has been observed during monsoon season at 30 GHz. Two years observations of exceedance probability of cloud attenuation and worst month statistics are presented. The variation of cloud attenuation with frequencies for different elevation angles has also been investigated. The seasonal and diurnal patterns of cloud attenuation are examined. Cloud attenuation, inferred from radiometric measurements before rain commencement, has been compared to rain attenuation at Ku-band. Exceedance probabilities of cloud and rain attenuation have been compared.  相似文献   

10.
Results are presented to show the application of GOES stereoscopy to the study of hurricanes and tornadic thunderstorms. Stereoscopic cloud top height contour maps were constructed to observe the structural evolution of two hurricanes: Frederic, 12 September 1979 and Allen, 8 August 1980 and a tornadic thunderstorm complex over Oklahoma on 2–3 May 1979. Stereoscopic height contours of Hurricane Allen show a very intense and symmetric storm with a circular shaped Central Dense Overcast (CDO) with an average height of 16.5 km. Height contours of Hurricane Frederic show a preferred region for convection with an explosive exhaust tower reaching a maximum height of 17.8 km. A technique for estimating tropical cyclone intensity using GOES stereoscopic height and infrared temperature information is also presented. Utilizing short interval (3-min) GOES stereoscopic data from 2 May 1979 and 9 May 1979 (SESAME days), cloud top ascent rates were measured and used in determining the intensity of growing convective cells. Results show vertical motions ranging from 4.4 m s?1 for a moderate storm to 7.7 m s?1 for an intense storm. These results compare well in magnitude with growth rates determined from simultaneous GOES infrared observations and previous estimates of visual and radar echo top growth rates of other thunderstorms.  相似文献   

11.
There is much observational data consistent with the hypothesis that the ionosphere-earth current density (Jz) in the global electric circuit, which is modulated by both solar activity and thunderstorm activity, affects atmospheric dynamics and cloud cover. One candidate mechanism involves Jz causing the accumulation of space charge on droplets and aerosol particles, that affects the rate of scavenging of the latter, notably those of Cloud Condensation Nuclei (CCN) and Ice Forming Nuclei (IFN) (  and ). Space charge is the difference, per unit volume, between total positive and total negative electrical charge that is on droplets, aerosol particles (including the CCN and IFN) and air ions. The cumulative effects of the scavenging in stratiform clouds and aerosol layers in an air mass over the lifetime of the aerosol particles of 1–10 days affects the concentration and size distribution of the CCN, so that in subsequent episodes of cloud formation (including deep convective clouds) there can be effects on droplet size distribution, coagulation, precipitation processes, and even storm dynamics.  相似文献   

12.
Coronal mass ejections (CMEs) observed near the Sun via LASCO coronographic imaging are the most important solar drivers of geomagnetic storms. ICMEs, their interplanetary, near-Earth counterparts, can be detected in situ, for example, by the Wind and ACE spacecraft. An ICME usually exhibits a complex structure that very often includes a magnetic cloud (MC). They can be commonly modelled as magnetic flux ropes and there is observational evidence to expect that the orientation of a halo CME elongation corresponds to the orientation of the flux rope. In this study, we compare orientations of elongated CME halos and the corresponding MCs, measured by Wind and ACE spacecraft. We characterize the MC structures by using the Grad–Shafranov reconstruction technique and three MC fitting methods to obtain their axis directions. The CME tilt angles and MC fitted axis angles were compared without taking into account handedness of the underlying flux rope field and the polarity of its axial field. We report that for about 64% of CME–MC events, we found a good correspondence between the orientation angles implying that for the majority of interplanetary ejecta their orientations do not change significantly (less than 45 deg rotation) while travelling from the Sun to the near-Earth environment.  相似文献   

13.
The main objective of our work was to investigate the impact of rain on wave observations from C-band (~5.3 GHz) synthetic aperture radar (SAR) in tropical cyclones. In this study, 10 Sentinel-1 SAR images were available from the Satellite Hurricane Observation Campaign, which were taken under cyclonic conditions during the 2016 hurricane season. The third-generation wave model, known as Simulating WAves Nearshore (SWAN) (version 41.31), was used to simulate the wave fields corresponding to these Sentinel-1 SAR images. In addition, rainfall data from the Tropical Rainfall Measuring Mission satellite passing over the spatial coverage of the Sentinel-1 SAR images were collected. The simulated results were validated against significant wave heights (SWHs) from the Jason-2 altimeter and European Centre for Medium-Range Weather Forecasts data, revealing a root mean square error (RMSE) of ~0.5 m with a 0.25 scatter index. Winds retrieved from the VH-polarized Sentinel-1 SAR images using the Sentinel-1 Extra Wide-swath Mode Wind Speed Retrieval Model after Noise Removal were taken as prior information for wave retrieval. It was discovered that rain did indeed affect the SAR wave retrieval, as evidenced by the 3.21-m RMSE of SWHs between the SAR images and the SWAN model, which was obtained for the ~1000 match-ups with raindrops. The raindrops dampened the wave retrieval when the rain rate was < ~5 mm/hr; however, they enhanced wave retrieval for higher rain rates. It was also found that the portion of the rain-induced ring wave with a wave number > 0.05 rad/m (~125 m wavelength) was clearly observed in the SAR-derived wave spectra.  相似文献   

14.
By using a Doppler Weather Radar (DWR) at Shriharikota (13.66°N & 80.23°E), an Artificial Neural Network (ANN) based technique is proposed to improve the accuracy of rain intensity estimation. Three spectral moments of a Doppler spectra are utilized as an input data to an ANN. Rain intensity, as measured by the tipping bucket rain gauges around the DWR station, are considered as a target values for the given inputs. Rain intensity as estimated by the developed ANN model is validated by the rain gauges measurements. With the help of a developed technique, reasonable improvement in the estimation of rain intensity is observed. By using the developed technique, root mean square error and bias are reduced in the range of 34–18% and 17–3% respectively, compared to ZR approach.  相似文献   

15.
A method for reconstruction of cross-section of rainfall situations with precipitation radar data based on wavelet analysis of multi-resolution analysis (MRA) which allows extract a peak of the radar reflectivity is proposed in order to detect bright band height. It is found that the bright band height can be estimated by using the MRA with the basis of Daubechies wavelet family. It is also found that the boundaries in rainfall structure can be clearly extracted with MRA.  相似文献   

16.
The rainfall process of Chengdu region in autumn has obvious regional features. Especially, the night-time rain rate of this region in this season is very high in China. Studying the spatial distribution and temporal variation of regional atmospheric precipitable water vapor (PWV) is important for our understanding of water vapor related processes, such as rainfall, evaporation, convective activity, among others in this area. Since GPS detection technology has the unique characteristics, such as all-weather, high accuracy, high spatial and temporal resolution as well as low cost, tracking and monitoring techniques on water vapor has achieved rapid developments in recent years. With GPS–PWV data at 30-min interval gathered from six GPS observational stations in Chengdu region in two autumns (September 2007–December 2007 and September 2008–December 2008), it is revealed that negative correlations exist between seasonally averaged value of GPS–PWV as well as its variation amplitude and local terrain altitude. The variation of PWV in the upper atmosphere of this region results from the water vapor variation from surface to 850 hPa. With the help of Fast Fourier Transform (FFT), it is found that the autumn PWV in Chengdu region has a multi-scale feature, which includes a seasonal cycle, 22.5 days period (quasi-tri-weekly oscillation). The variation of the GPS–PWV is related to periodical change in the transmitting of the water vapor caused by zonal and meridional wind strengths’ change and to the East Asian monsoon system. According to seasonal variation characteristics, we concluded that the middle October is the critical turning point in PWV content. On a shorter time scale, the relationship between autumn PWV and ground meteorological elements was obtained using the composite analysis approach.  相似文献   

17.
The present study emphasize the development of a region specific rain retrieval algorithm by taking into accounts the cloud features. Brightness temperatures (Tbs) from various TRMM Microwave Imager (TMI) channels are calibrated with near surface rain intensity as observed from the TRMM – Precipitation Radar. It shows that TbR relations during exclusive-Mesoscale Convective System (MCS) events have greater dynamical range compared to combined events of non-MCS and MCS. Increased dynamical range of TbR relations for exclusive-MCS events have led to the development of an Artificial Neural Network (ANN) based regional algorithm for rain intensity estimation. By using the exclusive MCSs algorithm, reasonably good improvement in the accuracy of rain intensity estimation is observed. A case study of a comparison of rain intensity estimation by the exclusive-MCS regional algorithm and the global TRMM 2A12 rain product with a Doppler Weather Radar shows significant improvement in rain intensity estimation by the developed regional algorithm.  相似文献   

18.
The performance of the existing rain attenuation models in tropical zones is still a debated issue due to the lack of measurements reported from these areas of the world to develop and validate prediction models. A three-year (2003–2005) campaign of rainfall rate and rain attenuation measurements was conducted on a satellite beacon link located in a tropical region of Thailand. The cumulative distributions of rain attenuation derived from the measured data are presented and compared with those obtained with existing prediction models.  相似文献   

19.
In this paper, we implement the AdaBoost algorithm to optimize the classifications results of precipitations intensities carried out by One versus All strategy using Support Vector Machine (OvA-SVM). The model developed which combines the AdaBoost algorithm with a multiclass SVM is applied to images from the MSG (Meteosat Second Generation) satellite. Other variants to build multiclass SVMs, such as the OvO-SVM (One versus One SVM), SBT-SVM (Slant Binary Tree SVM) and DDAG-SVM (Decision Directed Acyclic Graph) are also implemented on which we tested the AdaBoost algorithm. The study showed that the AdaBoost algorithm performed better in the case of the OvA-SVM variant compared to the other variants.In order to evaluate the elaborated model, some classification techniques, such as the ECST Enhanced Convective Stratiform Technique (ECST), the SART where the Support vector machine, Artificial neural network and Random forest classifiers are combined, the Convective/Stratiform Rain Area Delineation Technique (CS-RADT) and the Random Forest technique (RFT) are applied. The classification results obtained show that AdaBoost with OvA-SVM (AdaOvA-SVM) presents very interesting performances where the evaluation parameters POD, POFD, FAR, BIAS, CSI and PC indicate the values 95.2%, 12.4%, 14.7%, 0.9, 88.1% and 96.5% respectively. Indeed, the AdaOvA-SVM technique has surpassed the CS-RADT, ECST and RFT techniques. As for the comparison with the SART, we noted that OvA-SVM presents very close results. The same trend was also observed when estimating precipitation. At the end of this study, it is shown that the AdaBoost algorithm performs better on a weak classifier or on a strong classifier operating in an unfavorable environment.  相似文献   

20.
Millimeter and microwave system design at higher frequencies require as input a 1-min rain-rate cumulative distribution function for estimating the level of degradation that can be encountered at such frequency bands. Owing to the lack of 1-min rain-rate data in South Africa and the availability of 5-min and hourly rainfall data, we have used rain-rate conversion models and the refined Moupfouma model to convert the available data into 1-min rain-rate statistics. The attenuation caused by these rain rates was predicted using the International Telecommunication Union (ITU) recommendations model. The Kriging interpolation method was used to draw contour maps over different percentages of time for spatial interpolation of rain-rate values into a regular grid in order to obtain a highly consistent and predictable inter-gauge rain-rate variation over South Africa. The present results will be useful for system designers of modern broadband wireless access (BWA) and high-density cell-based Ku/Ka, Q/V band satellite systems, over the desired area of coverage in order to determine the appropriate effective isotropically radiated power (EIRP) and receiver characteristics of this region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号