首页 | 本学科首页   官方微博 | 高级检索  
     检索      


SciBox,an end-to-end automated science planning and commanding system
Institution:1. University of Basilicata, School of Engineering, 10, Ateneo Lucano Street, 85100 Potenza, Italy;2. National Research Council, Institute of Methodologies for Environmental Analysis (IMAA), c/da S.Loja, 85050 Tito Scalo (PZ), Italy;1. Solar System Missions Division, ESA/ESTEC, Noordwijk, Netherlands;2. Office for Support to New Member States, ESA/ESTEC, Netherlands;3. Science Payload Instrument Section, ESA/ESTEC, Netherlands;1. Institute of Solar-Terrestrial Physics SB RAS, Irkutsk, Russia;2. Research Centre for Astrophysics and Geophysics MAS, Ulaanbaatar, Mongolia;3. Irkutsk State Technical University, Irkutsk, Russia;1. Science and Technology on Aerospace Flight Dynamics Laboratory, Beijing 100094, China;2. Beijing Aerospace Control Center, Beijing 100094, China;1. Division of Sleep Medicine, Department of Medicine, Brigham and Women''s Hospital, Boston, MA 02115, USA;2. Division of Sleep Medicine, Harvard Medical School, Boston, MA 02115, USA;3. Sleep and Chronobiology Laboratory, Department of Integrative Physiology, University of Colorado, Boulder, CO 80309, USA
Abstract:SciBox is a new technology for planning and commanding science operations for Earth-orbital and planetary space missions. It has been incrementally developed since 2001 and demonstrated on several spaceflight projects. The technology has matured to the point that it is now being used to plan and command all orbital science operations for the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission to Mercury. SciBox encompasses the derivation of observing sequences from science objectives, the scheduling of those sequences, the generation of spacecraft and instrument commands, and the validation of those commands prior to uploading to the spacecraft. Although the process is automated, science and observing requirements are incorporated at each step by a series of rules and parameters to optimize observing opportunities, which are tested and validated through simulation and review. Except for limited special operations and tests, there is no manual scheduling of observations or construction of command sequences. SciBox reduces the lead time for operations planning by shortening the time-consuming coordination process, reduces cost by automating the labor-intensive processes of human-in-the-loop adjudication of observing priorities, reduces operations risk by systematically checking constraints, and maximizes science return by fully evaluating the trade space of observing opportunities to meet MESSENGER science priorities within spacecraft recorder, downlink, scheduling, and orbital-geometry constraints.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号