首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 382 毫秒
1.
《中国航空学报》2016,(6):1815-1829
Plastic wrinkling predictions and shear enforced wrinkling characteristics of Ti-alloy thin-walled tubes under combination die constraints have become key problems urgently in need of solutions in order to improve forming quality in their shear bending processes under differential temperature fields. To address this, a wrinkling wave function was developed by considering their shear bend deformation characteristics. Based on this wave function and the thin shell theory, an energy prediction model for this type of wrinkling was established. This model enables considera-tion of the effects of shear deformation zone ranges, material parameters, loading modes, and fric-tion coefficients between tube and dies on the minimum wrinkling energy. Tube wrinkling sensitive zones (WSZs) can be revealed by combining this wrinkling prediction model with a thermal-mechanical coupled finite element model for simulating these bending processes. The reliability of this wrinkling prediction model was verified, and an investigation into the tube wrinkling char-acteristics was carried out based on the experimental conditions. This found that the WSZs are located on either a single side or both sides of the maximum shear stress zone. When the friction coefficients between the tube and the various dies coincide, the WSZs are located on both sides. The larger the value of the tube inner corner radius and/or the smaller the value of the outer corner radius, the smaller the wrinkling probability. With an increase in the value of the moving die dis-placement, the wrinkling probability increases at first, and then decreases.  相似文献   

2.
Tube thinning control without wrinkling occurring is a key problem urgently to be solved for improving the forming qualities in numerical control (NC) bending processes of large-diameter Al-alloy thin-walled tubes (AATTs). It may be a way solving this problem to exert axial compression loads (ACL) on the tube end in the bending. Thus, this article establishes a three-dimensional (3D) elastic-plastic explicit finite element (FE) model for the bending under ACL and has its reliability verified. Through a multi-index orthogonal experiment design, a combination of process parameters, each expressed by a proper range, for this FE model is derived to overcome the compression instability on tube ends. By combining the FE model with a wrinkling energy prediction model, an in-depth study is conducted on the forming characteristics of large-diameter AATTs with small bending radii and it can be concluded that (1) The larger the tube diameters and the smaller the bending radii, the larger the induced tangent tension stress zones on tube intrados, by which the tube maximum tangent compression stress zones will be partitioned in the bending processes; thus, the smaller the ACL roles in decreasing thinning degrees and the larger the compression instability possibilities on tube ends. (2) The tube wrinkling possibilities under ACL are larger than without ACL acting in the earlier forming periods, and smaller in the later ones. (3) For the tubes with a size factor less than 80, the ACL roles in decreasing thinning degrees are stronger than in increasing wrinkling possibilities.  相似文献   

3.
Aluminum alloy (Al-alloy) thin-walled (D/t > 20, diameter D, wall thickness t) bent tubes have attracted increasing applications in many industries with mass quantities and diverse specifications due to satisfying high strength to weigh ratio requirements of product manufacturing. However, due to nonlinear nature of bending with coupling effects of multiple factors, the similarity theory seems not applicable and there occurs a challenge for efficient and reliable evaluation of the bending formability of thin-walled tube with various bending specifications. Considering the unequal deformation and three major instabilities, the bending formability of thin-walled Al-alloy tube in changing tube sizes such as D and t are clarified via both the analytical and FE modeling/ simulations. The experiments of rotary draw bending are conducted to validate the theoretical models and further confirm ’size effect’ related bending formability. The major results show that (1) The anti-wrinkling capability of tube decreases with the larger D and smaller t, and the effect significance of t is larger than that of D even under rigid supports; (2) The wall thinning increases with the larger D and smaller t, and this tendency becomes much more obvious under rigid supports; (3) The cross-section deformation increases with the larger D and smaller t according to the analytical model obtained intrinsic relationship, while this tendency becomes opposite due to the nonlinear role of mandrel die; (4) The size factor D/t can be used as a nondimensional index to evaluate both the bending formability regarding the wall thinning and cross-section deformation.  相似文献   

4.
《中国航空学报》2021,34(4):253-264
In the 3D free bending forming system, the bending die can be designed either in a sliding type or rolling friction type. Bending die-based sliding friction type is often called normal bending dies; however, the bending dies-based rolling friction type includes bending die-based roller type and ball type in structure. In the current study, the impact of three bending dies on the forming force, and the bent tube quality was investigated. The obtained results showed that the tangential stresses and strains of the tubes formed by the bending die-based roller type were the smallest among the three bending dies. Besides, the spherical bearing force PU was reduced drastically after using the roller type and ball type compared to the sliding friction type. Moreover, the uniformity of the wall thickness distribution of the tubes formed by the roller type and ball type was better than those obtained from the sliding friction type. In addition, the cross-section distortion rate was reduced by 2.8% using the roller type, and 1.8% using ball-type compared to the sliding friction type.  相似文献   

5.
弯管成形理论和技术研究进展与发展趋势(英文)   总被引:13,自引:4,他引:9  
As one kind of key components with enormous quantities and diversities,the bent tube parts satisfy the increasing needs for lightweight and high-strength product from both materials and structure aspec...  相似文献   

6.
《中国航空学报》2020,33(12):3479-3494
Because of the complex constraint effects among layers in multi-layered metallic bellows hydroforming, the stress concentration and defects such as wrinkling and fracture may easily occur. It is a key to reveal the deformation behaviors in order to obtain a sound product. Based on the ABAQUS platform, a 3D-FE model of the four-layered U-shaped metallic bellow hydroforming process is established and validated by experiment. The stress and strain distributions, wall thickness variations and bellow profiles of each layer in the whole process, including bulging, folding and springback stages, are studied. Then deformation behaviors of bellows under different forming conditions are discussed. It is found that the wall thinning degrees of different layer vary after hydroforming, and is the largest for the inner layer and smallest for the outer layer. At folding stage, the wall thinning degree of the crown point increases lineally, and the difference among layers increases as the process going. The displacements of the crown point decrease from the inner layer to the outer layer. After springback, the U-shaped cross section changes to a tongue shape, the change of convolution pitch is much larger than the change of convolution height, and the springback values of the inner layer are smaller than the outer layer. An increase in the internal pressure and die spacing cause the maximum wall thinning degree and springback increase. With changing of process parameters, bellows with deep convolution are easily encountered wall thinning during hydroforming and convolution distortion after springback. This research is helpful for precision forming of multi-layered bellows.  相似文献   

7.
Inner wrinkling phenomenon is more likely to develop during hydrodynamic deep drawing (HDD) of complicated component-forms due to the higher demand for controlling deformation sequences. Aiming at the problems in control of inner wrinkling for an irregular surface part featured with both concavity and convex, this research proposes an optimal design method of drawbead parameters to change the material flow. According to theoretical analysis of the mechanism of inner wrinkling, optimizing cavity pressure only is unreasonable to form a wrinkle-free deep-drawn part, so semi-circular drawbeads are employed. The effects of layout and height of drawbeads on forming results are discussed, and a process window is established based on evaluation indicators including the anti-wrinkle coefficient and the minimum wall thickness. Experiments are carried out to validate the process window, and the wall thickness and the wrinkle height are measured and compared with numerical findings. The results show that the anti-wrinkle ability of drawbeads weakens with increasing oblique angle and distance from the die center, while the wall thickness increases with increasing oblique angle and distance, and the inner wrinkling can be completely suppressed by drawbeads arranged in zones I and II with optimum penetration.  相似文献   

8.
薄壁管数控弯曲过程中失稳起皱的主要影响因素   总被引:10,自引:0,他引:10  
林艳  杨合  李恒  詹梅 《航空学报》2003,24(5):456-461
 针对薄壁管数控弯曲精确成形过程在多因素交互作用下可能发生失稳起皱这一复杂物理问题, 基于起皱能量准则和有限元方法相结合, 提出了预测该过程起皱发生的能量( 数值) 方法, 研究了影响薄壁管数控弯曲成形过程起皱发生的主要因素及影响机制。结果表明, 弯曲半径、相对管径、芯棒伸长量和摩擦因素是影响薄壁管数控弯曲精确成形过程起皱发生的主要因素, 而材料的应力强度系数和加工速度等对起皱发生影响较小。研究结果为薄壁管数控弯曲精确成形过程参数的确定和优化创造了条件。  相似文献   

9.
Inner flange and side wrinkling often occur in rotary-draw bending process of rectangular aluminum alloy wave-guide tubes, and the distribution and magnitude of wrinkling is related to geometrical parameters of the tubes. In order to study the effects of geometrical parameters on wrinkling of rectangular wave-guide tubes, a 3D-FE model for rotary-draw bending processes of thin-walled rectangular aluminum alloy wave-guide tubes was built based on the platform of ABA-QUS/Explicit, and its reliability was validated by experiments. Simulation and analysis of the influence laws of geometrical parameters on the wave heights of inner flange and side wrinkling were then carried out. The results show that inner flange wrinkling is the main wrinkling way to rectan- gular wave-guide tubes in rotary-draw bending processes, but side wrinkling cannot be neglected because side wrinkling is 2/3 of inner flange wrinkling when b and h are smaller. Inner flange and side wrinkling increase with increasing b and h; the influence of b on side wrinkling is larger than that of h, while both b and h affect inner flange wrinkling greatly. Inner flange and side wrinkling decrease with increasing R/h; the influence of h on inner flange and side wrinkling is larger than that of R.  相似文献   

10.
《中国航空学报》2020,33(2):721-729
3D free bending process, an advanced metal forming technology, has attracted much attention due to its unique geometrical flexibility and efficiency. Filling tubes with materials may effectively reduce the distortion in the cross-section area and restrain wrinkling and collapse of tube wall. In the present study, the impacts of filling different materials on the copper tubes during 3D free bending process were investigated. We have found that copper tubes filled with low melting point alloys could induce the most uniform stress distribution, which result in better formability and moderate thickness changing rates when compared to SS304 steel balls and PU rubbers. The lowest ellipticity reached to 1.467%.  相似文献   

11.
《中国航空学报》2023,36(5):582-594
The Large-size Conical Cylinders with Inner Transverse High Ribs (LCCWITHR) can reduce the weight of the parts while maintaining high rigidity and strength. Radially Loading Rotary Extrusion (RLRE) forming technology can achieve integral forming of LCCWITHR through the synergy of radial and rotary movements of dies. The flow law of the material during the forming process is the key to forming large-size inner ribs. At present, there is no unified understanding of the metal flow law of RLRE forming technology. An analytical expression was derived to predict the Radial Direction (RD) deformation loads. The FE simulation and process experiment were carried out to investigate the effects of the inclination angle, thickness factor and transition arc radius of the split top dies on the spacing of the metal diversion plane, the metal flow velocity of the rib area and the final radius of the inner rib. The influence of the split top dies loading distance and the bottom die rotation angle of each pass on the inner radius of the inner rib was verified. And the optimal combination of dies shape parameters and loading paths which can make the metal flow orderly was obtained: the inclination angle is 140°, the thickness factor is 3.64, the transition arc radius is 16 mm; the top dies loading distance is 15 mm, the bottom die rotation angle is 45°. The FE simulation results have been found to be in close agreement with physics experiment. The research results reveal the metal flow law of rib growth in the RLRE of LCCWITHR, which lays a theoretical foundation for subsequent thorough research and process optimization.  相似文献   

12.
刘春梅  刘郁丽  任家海  杨合 《航空学报》2015,36(4):1320-1329
 双脊矩形管的绕弯成形受内外侧模具的共同约束,不同模具约束下管坯的受力不同,使得其截面变形情况也不相同,而截面变形严重地影响弯管件的成形质量和使用性能。因此,基于ABAQUS有限元平台建立了双脊矩形管E弯成形三维有限元模型,并通过实验验证了模型的可靠性。采用所建模型,研究了内外侧模具约束条件对双脊矩形管E弯截面变形的影响规律,发现当只有内腹板脊槽受约束时,内腹板脊槽的内缩变形可得到较好的控制,而其他部位的变形则有增大的趋势;当只有外腹板脊槽受约束时,内腹板脊槽宽度变形基本不发生变化,而其他部位的变形则有减小的趋势;当内外腹板脊槽均受约束时,可较好地控制双脊矩形管E弯过程中的截面变形。芯头个数对整管截面高度、宽度、外腹板脊槽宽度与两脊槽底部的间距的变形影响较大,但对内腹板脊槽宽度的变形影响不显著。  相似文献   

13.
In three and six-axis free-bending equipment, the deformation zone length(A) is a fixed mechanical structure parameter modified when the relevant structure is redesigned and manufactured. In this study, a six degree of freedom(6-DOF) parallel mechanism was used as the control mechanism of the bending die, and a new method of changing the deformation zone length(A)was proposed. Firstly, an idealized geometric model of free bending-based active motion was established. Then, the influence of the de...  相似文献   

14.
韩冬  刘福顺  李岩  徐惠彬 《航空学报》2006,27(4):703-707
研究不同壁厚的TiNiFe形状记忆合金管接头紧固力随时间变化的定量关系对航空用TiNiFe形状记忆合金管接头有重要的实际工程应用价值。在有关TiNiFe形状记忆合金的力学建模和公式推导的基础上,利用计算机进行软件编程,完成了对TiNiFe形状记忆合金管接头升温过程产生紧固力的计算模拟,得到了TiNiFe形状记忆合金管接头在约束升温状态下紧固力随时间变化的模拟曲线,重点研究了管接头壁的厚度对管接头产生紧固力的影响,并通过具体的实验进行验证。发现管接头的升温逆转变过程很短,壁厚小于2.5mm范围内的管接头的紧固力随着壁厚的增加而增加,几乎成线性关系。  相似文献   

15.
To improve the forming quality and forming limit of the numerical control (NC) bending of high-pressure titanium alloy tubes, in this study, using three-dimensional (3D) finite element method, deformation behavior of medium-strength TA18 high-pressure tubes during NC bending with different bending radii is investigated. The results show that the cross-sectional deformation and the wall thickness variation during NC bending of TA18 tubes using a small bending radius (less than 2 times of tube outside diameter) are clearly different from that using a normal bending radius (between 2 and 4 times of tube outside diameter). For bending with a normal bending radius, with or without a mandrel, the distribution of the flattening in the bending area resembles a platform and an asymmetric parabola, respectively. For bending with a small bending radius, with or without a mandrel, the flattening both distributes like a parabola, but the former has a stable peak which deflects toward the initial bending section, and the latter has a more pronounced peak with a bending angle and deflects slightly toward the bending section. The wall thickness variations with a normal bending radius, with and without a mandrel, both resemble a platform when the bending angle exceeds a certain angle. For the bending with a small radius, the distribution of the wall thickness variation without a mandrel follows an approximate parabola which increases in value as the bending angle increases. If a mandrel is used, the thickening ratio increases from the initial bending section to the bending section.  相似文献   

16.
冲压发动机超薄壁波纹形件的粘性介质压力成形   总被引:1,自引:1,他引:1       下载免费PDF全文
粘性介质压力成形是一种采用具有高粘度并且可流动的半固态介质作为软凸模的成形方法。采用试验和数值模拟方法,研究了高温合金超薄壁波纹形件成形过程坯料形状、应变分布、厚度分布的变化和界面摩擦对板料成形的影响,研究结果表明:成形件尺寸精度高、表面质量好、厚度均匀;与钢凸模成形相比较,可以避免局部较小半径曲面之间的严重颈缩;对于具有局部较小半径曲面的复杂形状薄壁件,粘性介质压力成形显示出其优越性。  相似文献   

17.
《中国航空学报》2016,(5):1436-1444
Plane strain assumption and exponent hardening law are used to investigate the plastic deformation in tube bending. Some theoretical formulae including stress, curvature radius of neu-tral layer, angle of neutral layer deviation, bending moment, wall thickness variation and cross-section distortion, are developed to explain the phenomena in tube bending and their magnitudes are also determined. During unloading process, the springback angle is deduced using the virtual work principle, and springback radius is also given according to the length of the neutral layer which remains unchanged before and after springback. The theoretical formulae are validated by the experimental results or the validated simulation results in literature, which can be used to quickly predict the forming quality of tube numerical control (NC) bending.  相似文献   

18.
《中国航空学报》2020,33(4):1206-1217
Tooth bending damage resulting from an intense impact by the rotor sometimes occurs in the transient operation. To investigate the influence of after-damage clearance and tooth bending length on the leakage performance and rotordynamic coefficients of labyrinth seals, three tooth bending damages were taken into consideration, including the unbent tooth damage (abbreviated as Unbent), the partial tooth bending damage (abbreviated as Pbent) and the complete tooth bending damage (abbreviated as Cbent). The transient CFD solution was utilized to calculate the leakage flow rates and rotordynamic coefficients of labyrinth seals with clearances of 0.3, 0.4, 0.5, 0.6 mm for three tooth bending damages. The obtained result shows that the Unbent tooth damage leaks least while the Pbent tooth bending damage leaks most, and an increase of 6.1% for Cbent tooth bending damage and an increase of 19.4% for Pbent tooth bending damage are discovered at the tooth clearance of 0.6 mm in comparison with the Unbent tooth damage. Compared to the Unbent tooth damage, the effective damping for Pbent tooth bending damage and Cbent tooth bending damage is lower and drops by 9.7%–33.6% and 8.5%–22.6% respectively at the tooth clearance of 0.6 mm, suggesting that Pbent tooth bending damage or Cbent tooth bending damage tends to weaken the seal stability when compared to the Unbent tooth damage.  相似文献   

19.
闫晶  吴为 《航空学报》2016,37(9):2884-2894
不同温度下的薄壁钛管剪应力本构参数识别,是研究薄壁钛管差温剪切弯曲过程管材塑性变形行为迫切需要解决的关键问题。提出了一种管材剪切测试的方法。将不同温度下薄壁钛管等温剪切测试、剪切测试过程模拟有限元模型、以及基于距离函数的响应面模型相结合,提出了薄壁钛管不同温度下剪应力本构参数逆向识别方法。采用该方法,识别了TA2薄壁钛管剪应力本构参数。同时建立了TA2薄壁钛管差温剪切弯曲过程模拟3维弹塑性热力耦合有限元模型。分别采用剪应力本构参数和单拉应力本构参数模拟弯管实验过程,评估了有限元模型的可靠性。结果表明:对于剪应力本构参数,温度越高,管材的K值和n值将减小,m值呈现波动的趋势。与单拉应力本构参数相比,剪应力本构参数对温度的变化更敏感,且剪应力本构参数值较小。与单拉应力本构参数相比,使用剪应力本构参数的有限元模型精度较高,模拟精度最大提高了60%。  相似文献   

20.
90°圆截面弯管内三维紊流场实验研究   总被引:12,自引:0,他引:12  
用CTA热线风速仪和五孔探针, 对一曲率直径比Rc/D=0.87, 直径D=280mm的90°圆截面弯管内部三维紊流流场进行了详细测量和分析。给出了不同雷诺数下弯管内不同截面上时均速度场、紊流动能、总压及静压沿曲率半径方向的分布。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号