首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
通过采用稳态剪切和小振幅振动剪切方法研究了少铝端羟基聚醚(HTPE)推进剂药浆的流变性能。研究表明,少铝HTPE推进剂药浆均具有假塑性、屈服性、非线性粘弹性和触变性等流变特性。在30~65℃范围内,推进剂药浆的粘流活化能高于HTPE粘合剂的粘流活化能,分别为27.31、10.95 kJ/mol。推进剂药浆在50℃时有明显触变滞后环,而在60℃时药浆的滞后环明显减小,升高温度可降低推进剂药浆的触变程度;根据配方组成特点及触变特性,建立了药浆的触变模型。少铝HTPE推进剂药浆固化过程可分为反应初期、反应加速期和凝胶反应期,药浆的凝胶时间在750 min左右;在反应初期,药浆储能模量和损耗模量增长缓慢,化学反应速率较低;在凝胶反应期药浆的储能模量和损耗模量增长很快,短时间内到达初始储能模量和损耗模量的几十倍。  相似文献   

2.
利用LF-NMR研究燃速催化剂对推进剂固化反应的影响   总被引:1,自引:0,他引:1  
对分别加入0%、2%和4%燃速催化剂Ct的某推进剂A、B、C 3个体系,应用低场核磁共振技术(LF-NMR)分别在线监测50、60、70℃固化反应,通过聚合物氢质子横向弛豫时间T2进行固化反应动力学研究。结果显示,T2与体系固化反应程度有相关性,可在线监测样品固化反应的初期、中期和末期;3个体系在反应初期、中期均表现为一级动力学反应;各体系的反应初期的表观反应活化能Ea均大于反应中期,说明2个阶段的反应机理不同;提高固化温度能增加反应速率常数k、缩短固化时间,但不影响固化反应规则,没有改变交联网络的组成;同一固化温度下,随着Ct含量增大,k值增加、固化时间缩短,说明Ct对固化反应有催化作用,含量越高,催化作用越大,但过多的Ct会影响交联剂体系的链反应规则,一定程度上改变了推进剂的空间网络结构。  相似文献   

3.
为获得抗拉强度主曲线,基于动态储能模量主曲线、应力松弛模量主曲线和Griffith方程,建立了固体推进剂动态和静态单向拉伸力学性能之间量化关系,即考虑温度折算后,推进剂抗拉强度之比等于动态模量相应变换后的均方根之比。依据这种关系,可从动态模量主曲线估算出推进剂在任意温度和拉速下的应力值,进而绘制成抗拉强度主曲线。将计算值与实测值进行对比,结果较一致。利用所得抗拉强度主曲线,可推广用于评估推进剂药柱是否具备承受点火冲击的力学性能。  相似文献   

4.
采用DSC研究了有机硅固化剂1,3-二氨丙基-1,1,3,3-四甲基二硅氧烷(DSX)与双酚F环氧树脂(BPFER)的固化动力学。BPFER/DSX体系的非等温固化反应曲线和dα/dt-t曲线表明,该反应符合自催化反应模型的基本特征。T-β曲线预测的固化工艺的凝胶温度、固化温度和后固化温度分别为36、87、138℃。采用E变量法分析得该体系的固化反应表观活化能为46.70~50.54 kJ/mol,与Starink、Kissinger、Ozawa、Boswell等方程的验证结果基本一致。采用E常量法求得该体系不同升温速率下的固化反应动力学方程,动力学方程预测值与实验值十分吻合。TG和DTG曲线表明,BPFER/DSX固化物的耐热性优于BPFER/DDM固化物。  相似文献   

5.
根据衬层的使用特点,研究了NEPE推进剂用HTPB衬层在NEPE推进剂环境及自由状态下的老化特性,发现NEPE推进剂对HTPB衬层的固化和老化都有严重影响。NEPE推进剂药浆影响HTPB衬层固化,导致衬层固化不完全。NEPE推进剂环境下的取样衬层与衬层材料具有不同的老化机理。取样衬层老化过程中HTPB网络发生了交联反应,模量、凝胶分数增大;而衬层材料老化以降解断链反应为主。老化对衬层材料动态损耗因子没有明显影响,但对取样衬层损耗因子曲线α峰影响显著。  相似文献   

6.
凝胶推进剂直圆管中剪切速率与表观粘性实验研究   总被引:4,自引:4,他引:4  
左博  张蒙正 《火箭推进》2007,33(4):12-15
分析了直圆管中凝胶推进剂剪切速率和表观粘性与相关参数的关系,研究了直圆管中凝胶推进剂剪切速率和表观粘性的实验研究方法,利用物料管路测试系统进行了某型凝胶推进剂直圆管剪切速率与表观粘性实验研究。结果表明:管路实验可以得到较大范围内凝胶推进剂剪切速率与表观粘性关系;而且当剪切速率在104量级时表观粘度随剪切速率的增加基本不再变化。  相似文献   

7.
采用DSC法研究了不同升温速率下E51环氧树脂与ABO芳香胺固化体系的固化工艺、固化交联反应动力学参数及树脂体系的热性能。通过分析确定了树脂的基本固化工艺,采用Kissinger、Ozawa方法计算出树脂的表观活化能,其平均值为52.94 kJ/mol,结合Crane公式求出反应级数为1.1,固化反应动力学符合n级反应模型;测得玻璃化转变温度Tg=217℃,热失重曲线表明体系的起始分解温度为361℃。  相似文献   

8.
对动态力学性能和静态力学性能的关系进行了理论分析,认为二者之间存在对应关系。通过对采用动态力学分析(DMA)法得到的动态储能模量主曲线和材料试验机得到的静态松弛主曲线进行对比,验证了这种关系。提出了根据动态和静态力学性能关系,利用动态储能模量主曲线得到静态松弛模量和静态强度,以评估推进剂老化状态的非破坏性方法。预测值和实测值的比较结果显示,该方法能够较好地评估推进剂的寿命状态。  相似文献   

9.
张昊  庞爱民  彭松 《固体火箭技术》2006,29(3):190-194,199
对动态力学性能和静态力学性能的关系进行了理论分析,认为二者之间存在对应关系.通过对采用动态力学分析(DMA)法得到的动态储能模量主曲线和材料试验机得到的静态松弛主曲线进行对比,验证了这种关系.提出了根据动态和静态力学性能关系,利用动态储能模量主曲线得到静态松弛模量和静态强度,以评估推进剂老化状态的非破坏性方法.预测值和实测值的比较结果显示,该方法能够较好地评估推进剂的寿命状态.  相似文献   

10.
利用差示扫描量热法(DSC)得到端羟基聚醚(HTPE)推进剂(H01和H02)在不同升温速率下热分解曲线,用Kissinger公式和Ozawa公式计算了H01和H02热分解的表观活化能;利用绝热加速量热仪(ARC)对H01和H02进行绝热量热测试,得到H01和H02的热分解特性参数。结果表明:HTPE推进剂(基础配方为HTPE/A3/AP/Al/PSAN)中相稳定硝酸铵(PSAN)/高氯酸铵(AP)含量比值增加对推进剂的初始分解峰影响不大,HTPE推进剂的第一步分解是增塑剂A3的热分解,H01和H02的表观活化能分别为127.28kJ·mol~(-1)和123.43kJ·mol~(-1);在绝热条件下,H01的起始分解温度较高(147.78℃),高于H02的起始分解温度(136.44℃),反应结束后,两种物质系统的最大压力分别为0.709 MPa和0.531 MPa;H01的绝热温升(246.94℃)高于H02(184.47℃),发生热分解反应时,严重度更大,初始的热分解反应更为剧烈。因此,PSAN/AP含量比值增加有助于降低HTPE推进剂在热刺激下的响应程度。  相似文献   

11.
一种新型环氧树脂体系的固化动力学及耐热性研究   总被引:2,自引:1,他引:2  
通过不同升温速率下DSC研究了E51环氧树脂与DIA芳香胺固化体系的固化工艺、固化交联反应动力学参数及树脂体系的耐热性,利用FTIR方法计算了体系的固化度。通过分析确定了树脂的固化工艺,采用Kissinger、Ozawa法计算出树脂表观活化能,其均值为87.02kJ/mol,结合Crane公式求出反应级数为0.93。采用扭辫法测得玻璃化转变温度Tg=178℃。热失重曲线表明,体系的起始分解温度为364℃。  相似文献   

12.
进行不同温度和拉伸速率下推进剂单向拉伸力学性能试验,并利用扫描电镜对拉伸断口形貌进行了观察,分析了温度和拉伸速率对推进剂力学性能的影响以及不同细观破坏模式,特别是低温、高拉伸速率下推进剂的失效机理;基于时温等效原理,给出了推进剂力学性能主曲线和破坏包络线。研究表明:初始模量、抗拉强度主曲线呈指数递减趋势,在高温、低拉伸速率下其值减少;断裂伸长率主曲线呈多项式关系,在低温、高拉伸速率下明显降低;力学性能主曲线和破坏包络线可以用于不同试验条件下失效应力的预测;推进剂在低温、高拉伸速率条件下内部颗粒产生了明显的破碎,相同温度条件下,拉伸速率越高,颗粒破碎越严重。  相似文献   

13.
采用动态热机械分析法测定了SJ-1双基推进剂的动态力学性能,表征了其在65℃下的老化性能。在低温段(-10~40℃),随着老化时间的增加,损耗角正切tanδ值有明显下降,β松弛峰也越来越明显。SJ-1推进剂的α松弛的tanδ峰温、动态柔量(J′和J″)的值以及动态模量(E′和E″)、动态柔量(J′和J″)主曲线的叠合垂直位移因子与老化时间存在一定规律。通过TG-DTG试验发现,随着老化时间的增加,试样在183℃的质量损失逐渐减小,说明了增塑剂含量随老化时间增长而减小。因此,除了因结构松弛造成的“物理老化”外,部分增塑剂的逐渐挥发是造成上述各力学损耗量随老化时间下降的又一主要原因。  相似文献   

14.
用高压差示扫描量热(PDSC)、热重等热(TG-DTG)分析技术,研究了不同压力和DNTF含量对4种DNTF-CMDB推进剂热分解行为及动力学的影响。结果表明,DNTF含量对CMDB推进剂的热分解特征量有明显影响,分解热ΔHd与ΔT的比值(ΔHd/ΔT)随DNTF加入量的增加而下降,同时DNTF的加入也影响PDSC和DTG的峰形。高压下DNTF-CMDB推进剂的活化能均较常压小,高压使初始分解的反应速率常数提高,且随DNTF含量增加,活化能逐渐增大,分解初始阶段反应速率常数减小,6 MPa下的结果与燃速随DNTF含量增加呈下降的趋势相一致。  相似文献   

15.
为研究储氢合金对聚叠氮缩水甘油醚(GAP)固化胶片性能的影响,以多异氰酸酯(N100)为固化剂,制备出含储氢合金的GAP固化胶片。采用红外光谱(FTIR)等手段对固化胶片进行了表征,并对其固化反应活化能、凝胶分数和力学性能进行了测试。实验结果表明,储氢合金可和GAP上的—OH发生反应形成化学交联点;固化胶片中添加储氢合金,可降低其固化活化能,提高凝胶分数,促进三维网络结构的形成,提高力学性能。在添加量为20%处,A30对固化胶片三维网络结构的形成表现出最强的促进作用,使固化胶片的活化能降低27.97%,凝胶分数提高5.44%,拉伸强度提高131%,延伸率提高31%。  相似文献   

16.
文章研究了新型固化催化剂CSH-01对高燃速HTPB-IPDI推进剂力学性能、工艺性能、高温加速老化性能及推进剂/衬层界面粘接性能的影响。结果表明,添加0.04%CSH-01的固体推进剂,在固化时间不变的情况下可将推进剂固化温度从70℃降低到50℃;在较低的固化参数下推进剂的力学性能便可以达到较高的水平;固化后的推进剂中的异氰酸酯基团数量变少,减轻了推进剂后固化现象,使推进剂的高温加速老化性能也得到改善;推进剂药浆50℃下保温5 h的粘度为1177.8 Pa·s,可满足推进剂生产对工艺性能的要求;添加CSH-01的高燃速IPDI型HTPB推进剂与衬层中的固化反应速率更匹配,可改善推进剂的界面粘接性能。总之,与TPB相比,CSH-01具有更及时、适中的催化效果,是高燃速HTPBIPDI推进剂较为理想的固化催化剂。  相似文献   

17.
PBT复合固体推进剂的热分解特性   总被引:1,自引:0,他引:1  
为了研究PBT复合固体推进剂的热分解过程,分别采用差示扫描量热仪(DSC)和绝热加速量热仪(ARC),对复合固体推进剂及各单组分的热分解特性进行了研究,并对其进行了慢烤试验。DSC的试验结果表明,在温升速率为10℃/min的条件下,PBT复合推进剂的初始分解温度为183.6℃;推进剂组分中增塑剂BU的初始分解温度最低,为192.9℃,表明复合推进剂的热分解过程是从BU开始。在ARC试验中,推进剂在绝热条件下有三段放热过程,第一段放热过程的初始分解温度为121.7℃,且第一阶段的热分解并未直接引发其他组分的后续热分解反应。在慢烤试验中,PBT复合推进剂中最先分解的组分为BU,且BU的分解并未导致样品整体发生反应。根据DSC的测试结果,利用Kissinger法计算得到BU的热分解活化能为137.8 k J/mol,PBT复合推进剂第一段放热峰的表观活化能为101.7 k J/mol。  相似文献   

18.
DSC对苯基苯酚改性酚醛树脂固化机理研究   总被引:2,自引:0,他引:2  
采用DSC技术、Kissinger法对苯基苯酚改性酚醛树脂的固化过程进行了研究,得到放热峰顶活化能为169.3 kJ/mol,远大于普通酚醛树脂(约70 kJ/mol)。理论近似凝胶温度、固化温度及后处理温度分别为414.5 K、448.9 K和483.9K。酚醛树脂的固化通常由化学反应控制和扩散控制两阶段组成。通过Ozawa法得到活化能与转化率(E-a)的变化关系表明,2种树脂固化历程存在明显差异。普通酚醛树脂固化反应进行到10%(a=10%),粘度迅速增大,反应转向扩散控制;而苯基苯酚改性酚醛树脂固化反应时粘度变化小,直至a=70%,才较快增长。这将有利于小分子的逃逸和各基团充分反应。同时高活化能也表明,反应形成了高键能的化学键,有利于提高树脂的残炭率和烧蚀性能。  相似文献   

19.
未老化NEPE推进剂/衬层粘接试件拉伸失效模式研究   总被引:1,自引:0,他引:1  
采用原位拉伸扫描电镜观测不同温度下NEPE推进剂/衬层粘接界面裂纹扩展规律,得出不同温度下裂纹产生位置均出现在推进剂和衬层连接处,且裂纹的扩展存在相互竞争关系;粘接性能较好时,粘接界面的好坏主要取决于推进剂/衬层界面附近推进剂性能。重点考察了会引起推进剂"脱湿"的HMX界面,利用纳米压痕仪及动态力学实验,得出当推进剂中含NPBA时,HMX周围存在一高模量层,且该高模量层的动态储能模量与温度呈反向关系。该高模量层的存在或消失会引起推进剂在宏观性能上发生变化,进而影响推进剂/衬层试件宏观力学性能。  相似文献   

20.
为实现季戊四醇丙烯醛树脂(PEAR)/十二烷基苯磺酸(DBSA)体系在浇注PBX炸药中的应用以及获得该体系在工程应用中的工艺温度参数,采用粘度实验研究了体系的粘度特性,采用动态差示扫描量热法(DSC),通过模拟n级反应动力学模型、Kissinger微分法、Ozawa积分法以及Crane方程研究了体系的固化反应动力学。结果表明,50℃以上PEAR粘度几乎不受转速影响,PEAR与DBSA质量比大于25∶1,可保证浇注过程的顺利进行。PEAR/DBSA体系的凝胶化温度为345.92 K,固化温度为383.83 K,后处理温度为411.46 K。PEAR/DBSA体系固化反应为放热反应,反应的表观活化能为74.84 kJ/mol,指前因子为2.54×109min~(-1),反应级数为1.02,反应热为190.66 J/g。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号